Relation Extraction among Multiple Entities Using a Dual Pointer Network with a Multi-Head Attention Mechanism

Seongsik Park, H. Kim
{"title":"Relation Extraction among Multiple Entities Using a Dual Pointer Network with a Multi-Head Attention Mechanism","authors":"Seongsik Park, H. Kim","doi":"10.18653/v1/D19-6608","DOIUrl":null,"url":null,"abstract":"Many previous studies on relation extrac-tion have been focused on finding only one relation between two entities in a single sentence. However, we can easily find the fact that multiple entities exist in a single sentence and the entities form multiple relations. To resolve this prob-lem, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations by using a forward de-coder called an object decoder. Then, it finds 1-to-n subject-object relations by using a backward decoder called a sub-ject decoder. In the experiments with the ACE-05 dataset and the NYT dataset, the proposed model achieved the state-of-the-art performances (F1-score of 80.5% in the ACE-05 dataset, F1-score of 78.3% in the NYT dataset)","PeriodicalId":153447,"journal":{"name":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Fact Extraction and VERification (FEVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Many previous studies on relation extrac-tion have been focused on finding only one relation between two entities in a single sentence. However, we can easily find the fact that multiple entities exist in a single sentence and the entities form multiple relations. To resolve this prob-lem, we propose a relation extraction model based on a dual pointer network with a multi-head attention mechanism. The proposed model finds n-to-1 subject-object relations by using a forward de-coder called an object decoder. Then, it finds 1-to-n subject-object relations by using a backward decoder called a sub-ject decoder. In the experiments with the ACE-05 dataset and the NYT dataset, the proposed model achieved the state-of-the-art performances (F1-score of 80.5% in the ACE-05 dataset, F1-score of 78.3% in the NYT dataset)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多头注意机制的双指针网络多实体关系提取
以往的许多关系提取研究都集中在寻找单个句子中两个实体之间的一个关系。然而,我们很容易发现一个句子中存在多个实体,并且这些实体形成了多种关系。为了解决这一问题,我们提出了一种基于多头注意机制的双指针网络的关系提取模型。提出的模型通过使用称为对象解码器的前向解码器找到n- 1的主题-对象关系。然后,它通过使用称为主题解码器的向后解码器找到1对n的主题-对象关系。在ACE-05数据集和NYT数据集的实验中,所提出的模型达到了最先进的性能(ACE-05数据集的f1得分为80.5%,NYT数据集的f1得分为78.3%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Veritas Annotator: Discovering the Origin of a Rumour Neural Multi-Task Learning for Stance Prediction Hybrid Models for Aspects Extraction without Labelled Dataset Relation Extraction among Multiple Entities Using a Dual Pointer Network with a Multi-Head Attention Mechanism Team GPLSI. Approach for automated fact checking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1