Alejandro De Leon-Cuevas, S. Tovar-Arriaga, Arturo González-Gutiérrez, M. Aceves-Fernández
{"title":"Trajectory planning for keyhole neurosurgery using fuzzy logic for risk evaluation","authors":"Alejandro De Leon-Cuevas, S. Tovar-Arriaga, Arturo González-Gutiérrez, M. Aceves-Fernández","doi":"10.1109/ICEEE.2015.7357927","DOIUrl":null,"url":null,"abstract":"Planning safe trajectories in keyhole neurosurgery requires a high level of accuracy in order to access to small structures either by biopsies, stimulating deep brain and others. We propose a computer system that carries out decision making based on rules using fuzzy logic to plan safe trajectories for preoperative neurosurgery. The processes to generate input values of membership functions, and implementation of the system for decision function will be explained. The results of risk weights for each candidate trajectory are evaluated and the safest calculated trajectories taking into account the risk structures that there are in the brain from the insertion points to the target point are visualized.","PeriodicalId":285783,"journal":{"name":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"13 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2015.7357927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Planning safe trajectories in keyhole neurosurgery requires a high level of accuracy in order to access to small structures either by biopsies, stimulating deep brain and others. We propose a computer system that carries out decision making based on rules using fuzzy logic to plan safe trajectories for preoperative neurosurgery. The processes to generate input values of membership functions, and implementation of the system for decision function will be explained. The results of risk weights for each candidate trajectory are evaluated and the safest calculated trajectories taking into account the risk structures that there are in the brain from the insertion points to the target point are visualized.