Classification of ECG Signals for IoT-based Smart Healthcare Applications using WBAN

Arka Roy, S. Chatterjee, Prasenjit Maji, H. Mondal
{"title":"Classification of ECG Signals for IoT-based Smart Healthcare Applications using WBAN","authors":"Arka Roy, S. Chatterjee, Prasenjit Maji, H. Mondal","doi":"10.1109/ISDCS49393.2020.9263011","DOIUrl":null,"url":null,"abstract":"From the last few decades, the diagnoses of diseases are based on a medical test. Electrocardiogram (ECG) signal is one of the techniques used for diagnosing heart diseases. The Electrocardiograph or ECG machine allows removing many electrical and mechanical defects of the heart by measuring ECG’s which have some potential on the body surface. With the help of it, doctors are able to determine heart rate and other cardiac parameters. Early and accurate detection of arrhythmia types is important in detecting heart diseases and finding treatment for a patient. This paper deals with the analysis of the signal for the classification of critical and non-critical data using different learning-based algorithms for smart Internet of Things (IoT) based health-care monitoring application using Wireless Body Area Network (WBAN) and how to minimize the misclassified critical data.","PeriodicalId":177307,"journal":{"name":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Devices, Circuits and Systems (ISDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDCS49393.2020.9263011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

From the last few decades, the diagnoses of diseases are based on a medical test. Electrocardiogram (ECG) signal is one of the techniques used for diagnosing heart diseases. The Electrocardiograph or ECG machine allows removing many electrical and mechanical defects of the heart by measuring ECG’s which have some potential on the body surface. With the help of it, doctors are able to determine heart rate and other cardiac parameters. Early and accurate detection of arrhythmia types is important in detecting heart diseases and finding treatment for a patient. This paper deals with the analysis of the signal for the classification of critical and non-critical data using different learning-based algorithms for smart Internet of Things (IoT) based health-care monitoring application using Wireless Body Area Network (WBAN) and how to minimize the misclassified critical data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于物联网的WBAN智能医疗应用的心电信号分类
从过去的几十年,疾病的诊断是基于医学测试。心电图信号是诊断心脏疾病的技术之一。心电图仪或心电图机可以通过测量体表上有电位的心电图来消除心脏的许多电气和机械缺陷。在它的帮助下,医生能够确定心率和其他心脏参数。早期和准确地检测心律失常类型对于发现心脏病和找到治疗方法非常重要。针对基于无线体域网络(WBAN)的基于智能物联网(IoT)的医疗监测应用,研究了使用不同的学习算法对关键数据和非关键数据进行分类的信号分析,以及如何最大限度地减少关键数据的错误分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NoCSNN: A Scalable Interconnect Architecture for Neuromorphic Computing Systems Data Communication and Remote Monitoring using Raspberry Pi in a Solar-Wind-Biogas integrated Micro-grid system ISDCS 2020 Commentary Hardware Trojan Detection Using Improved Testability Measures Performance analysis of Pocket Doped Junction-Less TFET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1