A robust pre-filtering approach to EKF underwater target tracking

F. el-Hawary, Yuyang Jing
{"title":"A robust pre-filtering approach to EKF underwater target tracking","authors":"F. el-Hawary, Yuyang Jing","doi":"10.1109/OCEANS.1993.326098","DOIUrl":null,"url":null,"abstract":"A robust approach to solving the passive underwater target tracking problem based on the extended Kalman filtering (ERF) is proposed in this paper. The conventional method based on the assumption of Gaussian noise statistics is not robust in many instances and the resulting filter is likely to diverge even for the slightest deviation from the Gaussian assumption. The proposed approach involves pre-processing of data using a robust M-estimate pre-filter. Monte Carlo simulation results for test cases involving heavy-tailed contaminated observation noise demonstrate the robustness of the proposed estimation procedure.<<ETX>>","PeriodicalId":130255,"journal":{"name":"Proceedings of OCEANS '93","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of OCEANS '93","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.1993.326098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A robust approach to solving the passive underwater target tracking problem based on the extended Kalman filtering (ERF) is proposed in this paper. The conventional method based on the assumption of Gaussian noise statistics is not robust in many instances and the resulting filter is likely to diverge even for the slightest deviation from the Gaussian assumption. The proposed approach involves pre-processing of data using a robust M-estimate pre-filter. Monte Carlo simulation results for test cases involving heavy-tailed contaminated observation noise demonstrate the robustness of the proposed estimation procedure.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种鲁棒EKF水下目标跟踪预滤波方法
提出了一种基于扩展卡尔曼滤波(ERF)的无源水下目标跟踪鲁棒方法。传统的基于高斯噪声统计假设的方法在许多情况下不具有鲁棒性,并且即使与高斯假设稍有偏差,所得到的滤波器也可能发散。所提出的方法包括使用稳健的m估计预滤波器对数据进行预处理。对含有重尾污染观测噪声的测试用例进行了蒙特卡罗仿真,结果表明了所提估计方法的鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of high-resolution beamforming to multibeam swath bathymetry Interdisciplinary environmental information synthesis: examples of jumps, cycles, and trends in the North Pacific climate, 1930-1990 Computing ship resolution gain for horizontal towed arrays in realistic ocean environments Seabed classification from multibeam echosounder data using statistical methods SOTS: a Sun-based system for oceanographic analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1