FPGA Based Controller of BLDC Motor Using Trapezoid Control

Nurul Hidayat, Faizal Arya Samman, R. Sadjad
{"title":"FPGA Based Controller of BLDC Motor Using Trapezoid Control","authors":"Nurul Hidayat, Faizal Arya Samman, R. Sadjad","doi":"10.1109/ICITEE56407.2022.9954075","DOIUrl":null,"url":null,"abstract":"This paper presents the design of digital control based on FPGA to control the speed of a brushless direct current (BLDC) motor. The control algorithm applies trapezoid control or six-step commutation and unipolar independent PWM switching the commutation itself depends on three built-in hall effect sensors. This method is implemented on FPGA using a state machine model. Besides the speed control algorithm, this paper also presents an algorithm to calculate the speed of the BLDC motor. The speed calculation builds up with a counter to count the electric cycles for one second then the result is stored in the register and lookup table to convert the electric cycles data into revolutions per minute (rpm) data. The speed control and speed calculation are written using Verilog hardware description language (HDL) and verified through simulation using ModelSim the code is implemented on the FPGA DEO-nano EP4CE22 board. Motor control testing was carried out on a 350-watt 36 v BLDC motor with a three-phase inverter as the driver. The results are that the BLDC motor can rotate at maximum speed without and with a load of 3 kg, namely 699 RPM and 668 RPM respectively, for rotating clockwise and counterclockwise","PeriodicalId":246279,"journal":{"name":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEE56407.2022.9954075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design of digital control based on FPGA to control the speed of a brushless direct current (BLDC) motor. The control algorithm applies trapezoid control or six-step commutation and unipolar independent PWM switching the commutation itself depends on three built-in hall effect sensors. This method is implemented on FPGA using a state machine model. Besides the speed control algorithm, this paper also presents an algorithm to calculate the speed of the BLDC motor. The speed calculation builds up with a counter to count the electric cycles for one second then the result is stored in the register and lookup table to convert the electric cycles data into revolutions per minute (rpm) data. The speed control and speed calculation are written using Verilog hardware description language (HDL) and verified through simulation using ModelSim the code is implemented on the FPGA DEO-nano EP4CE22 board. Motor control testing was carried out on a 350-watt 36 v BLDC motor with a three-phase inverter as the driver. The results are that the BLDC motor can rotate at maximum speed without and with a load of 3 kg, namely 699 RPM and 668 RPM respectively, for rotating clockwise and counterclockwise
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的梯形无刷直流电机控制器
提出了一种基于FPGA的无刷直流(BLDC)电机调速数字控制设计。控制算法采用梯形控制或六步换相和单极独立PWM开关,换相本身依赖于三个内置霍尔效应传感器。该方法在FPGA上使用状态机模型实现。除了速度控制算法外,本文还提出了一种计算无刷直流电机速度的算法。速度计算建立一个计数器来计算一秒钟的电周期,然后将结果存储在寄存器和查找表中,以将电周期数据转换为每分钟转数(rpm)数据。采用Verilog硬件描述语言(HDL)编写速度控制和速度计算,并使用ModelSim进行仿真验证,代码在FPGA DEO-nano EP4CE22板上实现。电机控制测试在350w 36v无刷直流电机上进行,采用三相逆变器作为驱动器。结果表明:无刷直流电机在无负载和负载3kg时,分别为699 RPM和668 RPM,顺时针旋转和逆时针旋转,均能达到最大转速
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measuring Trust Perception during Information Evaluation Comparative Study of Multi-channel and Omni-channel on Supply Chain Management Classifying Stress Mental State by using Power Spectral Density of Electroencephalography (EEG) Development of CNN Pruning Method for Earthquake Signal Imagery Classification Object Selection Using LSTM Networks for Spontaneous Gaze-Based Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1