Improving timing error tolerance without impact on chip area and power consumption

Ken Yano, Takanori Hayashida, Toshinori Sato
{"title":"Improving timing error tolerance without impact on chip area and power consumption","authors":"Ken Yano, Takanori Hayashida, Toshinori Sato","doi":"10.1109/ISQED.2013.6523638","DOIUrl":null,"url":null,"abstract":"The demand of power saving and highly dependable LSI has increased by the miniaturization of device process technology and the spread of portable devices such as mobile phones. The design method which takes the worst case scenario makes the design margin too large because of the parameter variations in the deep submicron domain and it has serious impact for performance and power consumption. To deal with excessive design margins, typical-case design method with canary FF has been proposed so far. By using canary FF, variability-aware large guard band can be decreased. In this paper, we describe how canary FF can be integrated in a typical digital circuit design flow in detail and analyze the area and power overheads compared with the worst-case design method. The analysis is done by implementing two conventional 32-bit RISC processor cores; miniMIPS and MeP (Media Embedded Processor). The results show that our proposed method can reduce chip areas effectively and power overhead can be reduced to very small.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The demand of power saving and highly dependable LSI has increased by the miniaturization of device process technology and the spread of portable devices such as mobile phones. The design method which takes the worst case scenario makes the design margin too large because of the parameter variations in the deep submicron domain and it has serious impact for performance and power consumption. To deal with excessive design margins, typical-case design method with canary FF has been proposed so far. By using canary FF, variability-aware large guard band can be decreased. In this paper, we describe how canary FF can be integrated in a typical digital circuit design flow in detail and analyze the area and power overheads compared with the worst-case design method. The analysis is done by implementing two conventional 32-bit RISC processor cores; miniMIPS and MeP (Media Embedded Processor). The results show that our proposed method can reduce chip areas effectively and power overhead can be reduced to very small.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不影响芯片面积和功耗的情况下提高时序误差容忍度
随着器件工艺技术的小型化和移动电话等便携式设备的普及,对低功耗、高可靠性的大规模集成电路的需求日益增加。考虑最坏情况的设计方法由于深亚微米域的参数变化,使得设计余量过大,对性能和功耗有严重影响。为了解决设计余量过大的问题,目前提出了带金丝雀FF的典型案例设计方法。通过使用金丝雀式FF,可以减小可变感知的大保护带。在本文中,我们详细描述了如何将金丝雀FF集成到典型的数字电路设计流程中,并分析了与最坏情况设计方法相比的面积和功耗开销。分析是通过实现两个传统的32位RISC处理器内核来完成的;miniMIPS和MeP(媒体嵌入式处理器)。结果表明,该方法可以有效地减小芯片面积,并将功耗降至极小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1