Class-based Flow Scheduling Framework in SDN-based Data Center Networks

Maiass Zaher, Aymen Hasan Alawadi, S. Molnár
{"title":"Class-based Flow Scheduling Framework in SDN-based Data Center Networks","authors":"Maiass Zaher, Aymen Hasan Alawadi, S. Molnár","doi":"10.1109/iCCECE49321.2020.9231052","DOIUrl":null,"url":null,"abstract":"The emerging technologies leveraging Data Center Networks (DCN) and their consequent traffic patterns impose more necessity for improving Quality of Service (QoS). In this paper, we propose Sieve, a new distributed SDN framework that efficiently schedules flows based on the available bandwidth to improve Flow Completion Time (FCT) of mice flows. In addition, we propose a lightweight sampling mechanism to sample a portion of flows. In particular, Sieve schedules the sampled flows, and it reschedules only elephant flows upon threshold hits. Furthermore, our framework allocates a portion of the flows to ECMP, so that the associated overhead can be mitigated in the control plane and ECMP-related packet collisions are fewer as well. Mininet has been used to evaluate the proposed solution, and Sieve provides better FCT up to 50% in comparison to the existing solutions like ECMP and Hedera.","PeriodicalId":413847,"journal":{"name":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computing, Electronics & Communications Engineering (iCCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCCECE49321.2020.9231052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging technologies leveraging Data Center Networks (DCN) and their consequent traffic patterns impose more necessity for improving Quality of Service (QoS). In this paper, we propose Sieve, a new distributed SDN framework that efficiently schedules flows based on the available bandwidth to improve Flow Completion Time (FCT) of mice flows. In addition, we propose a lightweight sampling mechanism to sample a portion of flows. In particular, Sieve schedules the sampled flows, and it reschedules only elephant flows upon threshold hits. Furthermore, our framework allocates a portion of the flows to ECMP, so that the associated overhead can be mitigated in the control plane and ECMP-related packet collisions are fewer as well. Mininet has been used to evaluate the proposed solution, and Sieve provides better FCT up to 50% in comparison to the existing solutions like ECMP and Hedera.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
sdn数据中心网络中基于类的流调度框架
利用数据中心网络(DCN)的新兴技术及其随之而来的流量模式对提高服务质量(QoS)提出了更大的必要性。在本文中,我们提出了一种新的分布式SDN框架Sieve,该框架基于可用带宽有效地调度流量,以提高流量完成时间(Flow Completion Time, FCT)。此外,我们提出了一种轻量级的采样机制来对一部分流进行采样。特别地,Sieve调度采样流,它只在达到阈值时重新调度大象流。此外,我们的框架将一部分流分配给ECMP,这样可以减轻控制平面中的相关开销,并且与ECMP相关的数据包冲突也更少。Mininet已经被用来评估提议的解决方案,与现有的解决方案(如ECMP和Hedera)相比,Sieve提供了更好的FCT,高达50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Key-Value Store using High Level Synthesis Flow for Securities Trading System Design and Analysis of Fractional-Order PID Controller and its variants for Nonlinear Process using Kalman Filter A CMOS Current Starved VCO for Energy Harvesting applications Iris Recognition Performance Analysis for Noncooperative Conditions Effect of Preprocessing on Performance of Neural Networks for Microscopy Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1