Heuristic real time feature extraction of the electroencephalogram (EEG)

ACM '74 Pub Date : 1900-01-01 DOI:10.1145/1408800.1408833
A. Gevins, C. Yeager, S. Diamond
{"title":"Heuristic real time feature extraction of the electroencephalogram (EEG)","authors":"A. Gevins, C. Yeager, S. Diamond","doi":"10.1145/1408800.1408833","DOIUrl":null,"url":null,"abstract":"The extremely complex nature of the electroencephalogram (EEG), and the subtle, nonquantified methods of pattern recognition used by human interpreters have made EEG analysis resistant to automation. Attempts at pattern recognition using multivariate classification procedures have not produced generalizable results due to the inadequate degree and quality of feature extraction prior to classification.\n A real time, on-line EEG analysis strategy is described which incorporates feature extracting algorithms derived from models of human EEG interpretation. A system based upon this strategy has been implemented on a dedicated minicomputer. It includes: 1) spectral analysis using the Fast Fourier Transform (FFT) to produce continuous estimates of power and coherence; 2) parallel time domain analysis to detect the occurrence of sharp transient events of possible clinical significance; 3) continuous isometric display of spectral and transient functions; 4) spectral and time domain algorithms for the rejection of noncortical and instrumental artifact; 5) heuristics to isolate patterns and events of potential clinical significance; 6) interactive alteration of analysis and display parameters to facilitate manipulation of data from various experimental paradigms; 7) on-line feedback to alter, when necessary, artifact rejection, transient detection and feature extraction decision thresholds.","PeriodicalId":204185,"journal":{"name":"ACM '74","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '74","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1408800.1408833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The extremely complex nature of the electroencephalogram (EEG), and the subtle, nonquantified methods of pattern recognition used by human interpreters have made EEG analysis resistant to automation. Attempts at pattern recognition using multivariate classification procedures have not produced generalizable results due to the inadequate degree and quality of feature extraction prior to classification. A real time, on-line EEG analysis strategy is described which incorporates feature extracting algorithms derived from models of human EEG interpretation. A system based upon this strategy has been implemented on a dedicated minicomputer. It includes: 1) spectral analysis using the Fast Fourier Transform (FFT) to produce continuous estimates of power and coherence; 2) parallel time domain analysis to detect the occurrence of sharp transient events of possible clinical significance; 3) continuous isometric display of spectral and transient functions; 4) spectral and time domain algorithms for the rejection of noncortical and instrumental artifact; 5) heuristics to isolate patterns and events of potential clinical significance; 6) interactive alteration of analysis and display parameters to facilitate manipulation of data from various experimental paradigms; 7) on-line feedback to alter, when necessary, artifact rejection, transient detection and feature extraction decision thresholds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
启发式脑电图实时特征提取
脑电图(EEG)的极其复杂的性质,以及人类口译员使用的微妙的、非量化的模式识别方法,使得脑电图分析难以自动化。由于在分类之前特征提取的程度和质量不足,使用多元分类程序进行模式识别的尝试没有产生可推广的结果。介绍了一种实时、在线的脑电信号分析策略,该策略结合了从人类脑电信号解释模型中导出的特征提取算法。基于此策略的系统已在专用的小型计算机上实现。它包括:1)使用快速傅立叶变换(FFT)进行频谱分析,以产生功率和相干性的连续估计;2)平行时域分析,检测可能具有临床意义的突发性瞬时事件的发生;3)光谱和瞬态函数的连续等距显示;4)用于抑制非皮质和仪器伪影的频谱和时域算法;5)启发式方法分离具有潜在临床意义的模式和事件;6)交互更改分析和显示参数,以方便操作来自各种实验范式的数据;7)在线反馈改变,必要时,工件拒绝,瞬态检测和特征提取决策阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton planning spaces for non-numeric heuristic optimization* An on-line interactive audiographic learning system Impact analysis Language constructs for message handling in decentralized programs Design Automation in a computer science curriculum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1