Extraction and Evaluation of EEG Covariates and Their Influence on GLM Model: EEG covariates and their influence on GLM model

V. Piorecká, F. Černý, M. Piorecký, V. Koudelka, J. Horáček, J. Bušková, M. Brunovský, J. Kopřivová
{"title":"Extraction and Evaluation of EEG Covariates and Their Influence on GLM Model: EEG covariates and their influence on GLM model","authors":"V. Piorecká, F. Černý, M. Piorecký, V. Koudelka, J. Horáček, J. Bušková, M. Brunovský, J. Kopřivová","doi":"10.1145/3502060.3502354","DOIUrl":null,"url":null,"abstract":"This study aims at the identification of suitable approaches to dimension reduction methods for EEG covariate extraction for GLM analysis of fMRI time series. We present the results of anatomical and mathematical methods of dimension covariate reduction and their combinations. Individual models according to the used covariates showed that jPCA creates a lower number of significantly correlated voxels. Anatomical reduction balances the number of correlated voxels between mean and jPCA. The choice of covariates has a significant effect on the resulting GLM activations. The average allows generalization to explain a physiological activity, jPCA offers the ability to identify specific activations.","PeriodicalId":193100,"journal":{"name":"2021 International Symposium on Biomedical Engineering and Computational Biology","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502060.3502354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims at the identification of suitable approaches to dimension reduction methods for EEG covariate extraction for GLM analysis of fMRI time series. We present the results of anatomical and mathematical methods of dimension covariate reduction and their combinations. Individual models according to the used covariates showed that jPCA creates a lower number of significantly correlated voxels. Anatomical reduction balances the number of correlated voxels between mean and jPCA. The choice of covariates has a significant effect on the resulting GLM activations. The average allows generalization to explain a physiological activity, jPCA offers the ability to identify specific activations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑电协变量的提取与评价及其对GLM模型的影响:脑电协变量及其对GLM模型的影响
本研究旨在为fMRI时间序列的GLM分析寻找合适的EEG协变量提取降维方法。我们提出了维数协变量降维的解剖和数学方法及其组合的结果。根据所使用的协变量,单个模型显示jPCA创建的显著相关体素数量较少。解剖还原平衡了均值和jPCA之间相关体素的数量。协变量的选择对最终的GLM激活有显著影响。平均允许一般化解释生理活动,jPCA提供了识别特定激活的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-correction in protoacoustic range verification for different proton pulse widths A comparison of different Machine Learning algorithms for predicting the length of hospital stay for patients undergoing cataract surgery Modelling the hospital length of stay for patients undergoing laparoscopic appendectomy through a Multiple Regression Model Investigation of the risk of surgical infections at the “Federico II” University Hospital by regression analysis using the Firth method Healthcare Associated Infections in the Neonatal Intensive Care Unit of the “Federico II” University Hospital: Statistical Analysis and Study of Risk Factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1