A hybrid Aquila Optimizer sine cosine Algorithm for Numerical Optimization

Fei Chu, Jiayang Wang, Fulin Tian
{"title":"A hybrid Aquila Optimizer sine cosine Algorithm for Numerical Optimization","authors":"Fei Chu, Jiayang Wang, Fulin Tian","doi":"10.1145/3590003.3590048","DOIUrl":null,"url":null,"abstract":"To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address the shortcomings of the Aquila optimizer algorithm (AO), this paper proposes a novel hybrid Aquila Optimizer sine cosine Algorithm(AO-SCA). Firstly, Singer chaotic mapping is used for initialization, so that the initial solution position distribution was more homogeneous, and increased the richness of the population. Secondly, in the exploration phase of AO, the concept of sine and cosine algorithm is integrated and the nonlinear sine learning factor is introduced to balance the local and global digging ability and accelerate the convergence speed. Finally, through the numerical experiment simulation of 8 benchmark functions, the results show that the optimization ability and convergence speed of the proposed algorithm is better.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于数值优化的混合Aquila优化器正弦余弦算法
针对Aquila优化器算法(AO)的不足,提出了一种新的Aquila优化器正弦余弦混合算法(AO- sca)。首先,采用Singer混沌映射进行初始化,使初始解位置分布更加均匀,增加了种群的丰富度;其次,在AO的探索阶段,整合了正弦和余弦算法的概念,引入非线性正弦学习因子,平衡了局部和全局挖掘能力,加快了收敛速度;最后,通过8个基准函数的数值实验模拟,结果表明所提算法具有较好的优化能力和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Interpretable Brain Network Atlas-Based Hybrid Model for Mild Cognitive Impairment Progression Prediction Heart Sound Classification Algorithm Based on Sub-band Statistics and Time-frequency Fusion Features An Unmanned Lane Detection Algorithm Using Deep Learning and Ordered Test Sets Strategy Federated Learning-Based Intrusion Detection Method for Smart Grid A U-Net based Self-Supervised Image Generation Model Applying PCA using Small Datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1