Technical Perspective of TURL

Paolo Papotti
{"title":"Technical Perspective of TURL","authors":"Paolo Papotti","doi":"10.1145/3542700.3542708","DOIUrl":null,"url":null,"abstract":"Several efforts aim at representing tabular data with neural models for supporting target applications at the intersection of natural language processing (NLP) and databases (DB) [1-3]. The goal is to extend to structured data the recent neural architectures, which achieve state of the art results in NLP applications. Language models (LMs) are usually pre-trained with unsupervised tasks on a large text corpus. The output LM is then fine-tuned on a variety of downstream tasks with a small set of specific examples. This process has many advantages, because the LM contains information about textual structure and content, which are used by the target application without manually defining features.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3542700.3542708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Several efforts aim at representing tabular data with neural models for supporting target applications at the intersection of natural language processing (NLP) and databases (DB) [1-3]. The goal is to extend to structured data the recent neural architectures, which achieve state of the art results in NLP applications. Language models (LMs) are usually pre-trained with unsupervised tasks on a large text corpus. The output LM is then fine-tuned on a variety of downstream tasks with a small set of specific examples. This process has many advantages, because the LM contains information about textual structure and content, which are used by the target application without manually defining features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TURL的技术视角
在自然语言处理(NLP)和数据库(DB)的交叉领域,一些研究旨在用神经模型来表示表格数据,以支持目标应用[1-3]。目标是将最新的神经架构扩展到结构化数据,从而在NLP应用中获得最先进的结果。语言模型(LMs)通常使用大型文本语料库上的无监督任务进行预训练。然后,输出LM使用一小组特定示例对各种下游任务进行微调。这个过程有很多优点,因为LM包含关于文本结构和内容的信息,目标应用程序可以使用这些信息,而无需手动定义特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1