Effect of Microstructure on Fatigue Strength of Bovine Compact Bones

Jong Heon Kim, M. Niinomi, T. Akahori, Junji Takeda, H. Toda
{"title":"Effect of Microstructure on Fatigue Strength of Bovine Compact Bones","authors":"Jong Heon Kim, M. Niinomi, T. Akahori, Junji Takeda, H. Toda","doi":"10.1299/JSMEA.48.472","DOIUrl":null,"url":null,"abstract":"Despite its clinical importance in developing artificial bone, limited information is available regarding the microstructure with respect to the fatigue characteristics of bones. In this study, the fatigue characteristics of the bovine humerus and femur were investigated with respect to microstructures. Fatigue tests were conducted on the bovine humerus and femur at a stress ratio of 0.1 and a frequency of 10Hz. The fatigue strength of the plexiform bone is slightly greater than that of the haversian bone. This is because the volume fraction of voids in the haversian bone, which is the site of stress concentration, is higher than that of voids in the plexiform bone. Several microcracks are observed on the fatigue fracture surface of the haversian bone. The microcracks are short and their propagation directions are random. However, the number of the microcracks in the plexiform bone is very small. The microcracks are relatively long and their propagation directions are parallel to the longitudinal direction of the lamellar bone. Therefore, the crack requires relatively more energy to propagate across the lamella in the plexiform bone.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.48.472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Despite its clinical importance in developing artificial bone, limited information is available regarding the microstructure with respect to the fatigue characteristics of bones. In this study, the fatigue characteristics of the bovine humerus and femur were investigated with respect to microstructures. Fatigue tests were conducted on the bovine humerus and femur at a stress ratio of 0.1 and a frequency of 10Hz. The fatigue strength of the plexiform bone is slightly greater than that of the haversian bone. This is because the volume fraction of voids in the haversian bone, which is the site of stress concentration, is higher than that of voids in the plexiform bone. Several microcracks are observed on the fatigue fracture surface of the haversian bone. The microcracks are short and their propagation directions are random. However, the number of the microcracks in the plexiform bone is very small. The microcracks are relatively long and their propagation directions are parallel to the longitudinal direction of the lamellar bone. Therefore, the crack requires relatively more energy to propagate across the lamella in the plexiform bone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
显微组织对牛致密骨疲劳强度的影响
尽管人工骨在临床上具有重要意义,但有关骨骼疲劳特征的微观结构的信息有限。在这项研究中,疲劳特性的牛肱骨和股骨进行了研究,关于微观结构。对牛肱骨和股骨进行疲劳试验,应力比为0.1,频率为10Hz。丛状骨的疲劳强度略大于哈弗氏骨。这是因为哈弗氏骨(应力集中的部位)中空洞的体积分数高于丛状骨中的空洞。在哈氏骨的疲劳断口上观察到几个微裂纹。微裂纹长度短,扩展方向随机。然而,丛状骨的微裂纹数量很少。微裂纹较长,其扩展方向平行于板层骨的纵向。因此,在丛状骨中,裂纹需要相对较多的能量才能在骨板间传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Initiation of the Interfacial Debonding in Single Fiber Composite Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation Two Collinear Interface Cracks between Two Dissimilar Functionally Graded Piezoelectric/Piezomagnetic Material Layers under Anti-Plane Shear Loading Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory Development of a Finite Element Contact Analysis Algorithm to Pass the Patch Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1