Predicting Nanomaterials toxicity pathways based on genome-wide transcriptomics studies using Bayesian networks

Irini Furxhi, Finbarr Murphy, Barry Sheehan, Martin Mullins, P. Mantecca
{"title":"Predicting Nanomaterials toxicity pathways based on genome-wide transcriptomics studies using Bayesian networks","authors":"Irini Furxhi, Finbarr Murphy, Barry Sheehan, Martin Mullins, P. Mantecca","doi":"10.1109/NANO.2018.8626300","DOIUrl":null,"url":null,"abstract":"The potential toxicity of Nanomaterials (NMs) is widely documented but risk assessment continues to pose a challenge. In this study, data derived from toxicogenomic studies are used to build a Bayesian Network (BN) model. This approach integrates transcriptomics data to successfully predict a number of biological effects. The model uses experimental conditions such as dose, duration and cell type along with NM physicochemical properties, and is developed to predict the effects of NM exposure on in vitro biological systems. The model version proposed in this study is shown to successfully predict a number of biological processes with a success rate >80% for most outcomes. The model validation shows a robust and promising methodology for incorporating transcriptomics studies in a hazard and, extendedly, risk assessment modelling framework.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The potential toxicity of Nanomaterials (NMs) is widely documented but risk assessment continues to pose a challenge. In this study, data derived from toxicogenomic studies are used to build a Bayesian Network (BN) model. This approach integrates transcriptomics data to successfully predict a number of biological effects. The model uses experimental conditions such as dose, duration and cell type along with NM physicochemical properties, and is developed to predict the effects of NM exposure on in vitro biological systems. The model version proposed in this study is shown to successfully predict a number of biological processes with a success rate >80% for most outcomes. The model validation shows a robust and promising methodology for incorporating transcriptomics studies in a hazard and, extendedly, risk assessment modelling framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝叶斯网络预测基于全基因组转录组学研究的纳米材料毒性途径
纳米材料(NMs)的潜在毒性被广泛记录,但风险评估仍然构成挑战。在本研究中,来自毒物基因组学研究的数据被用于建立贝叶斯网络(BN)模型。这种方法整合了转录组学数据,成功地预测了许多生物效应。该模型采用剂量、持续时间和细胞类型等实验条件以及纳米粒子的物理化学性质,用于预测纳米粒子暴露对体外生物系统的影响。本研究中提出的模型版本被证明可以成功预测许多生物过程,大多数结果的成功率为80%。该模型验证显示了将转录组学研究纳入危害和扩展风险评估建模框架的稳健和有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monolithic Integration of III-V on Si Applied to Lasing Micro-Cavities: Insights from STEM and EDX Characterisation of Electroless Deposited Cobalt by Hard and Soft X-ray Photoemission Spectroscopy Multiscale simulation of nanostructured devices Modeling of a Stacked Gated Nanofluidic Channel Metamaterial-Based Label-Free Chemical Sensors for the Detection of Volatile Organic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1