{"title":"A Novel Single-Phase Switched-Capacitor Based 5-level Inverter Topology Featuring Voltage Boosting Capability and Common Mode Voltage Reduction","authors":"A. Hota, V. Sonti, Sachin Jain, V. Agarwal","doi":"10.1109/SeFet48154.2021.9375761","DOIUrl":null,"url":null,"abstract":"This paper presents a single-phase 5-level inverter based on switched capacitor principle. The proposed topology is capable of boosting the input voltage two times. Apart from this, a suitable PWM strategy is also designed to produce a low frequency square-wave common mode voltage (CMV). This allows the leakage current to be considerably small for a transformerless implementation of the proposed topology. The proposed inverter uses only 9 controlled switches which can be realized using MOSFET or IGBT. An important advantage of the proposed topology is that the number of devices are minimized considering voltage boosting and minimized leakage current performance. This allows the proposed inverter to be used as a Transformerless inverter in case of solar PV applications. A simulation model is developed in PLECS software tojustify the various claims. An experimental set-up is underway.","PeriodicalId":232560,"journal":{"name":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFet48154.2021.9375761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents a single-phase 5-level inverter based on switched capacitor principle. The proposed topology is capable of boosting the input voltage two times. Apart from this, a suitable PWM strategy is also designed to produce a low frequency square-wave common mode voltage (CMV). This allows the leakage current to be considerably small for a transformerless implementation of the proposed topology. The proposed inverter uses only 9 controlled switches which can be realized using MOSFET or IGBT. An important advantage of the proposed topology is that the number of devices are minimized considering voltage boosting and minimized leakage current performance. This allows the proposed inverter to be used as a Transformerless inverter in case of solar PV applications. A simulation model is developed in PLECS software tojustify the various claims. An experimental set-up is underway.