Low power and compact mixed-mode signal processing hardware using spin-neurons

M. Sharad, Deliang Fan, K. Roy
{"title":"Low power and compact mixed-mode signal processing hardware using spin-neurons","authors":"M. Sharad, Deliang Fan, K. Roy","doi":"10.1109/ISQED.2013.6523609","DOIUrl":null,"url":null,"abstract":"CMOS Digital signal processing hardware are power efficient but consume large area, whereas, analog processing units, based on CMOS technology are compact, but power hungry. Emerging magneto-metallic spin-torque devices like domain wall magnets can however perform analog-mode computation like summation and thresholding at ultra low voltage. Such devices can be exploited in designing spin-CMOS hybrid analog processing units that are compact as well as low power. In this work we present a mixed-mode signal processing scheme employing “domain wall neurons” that involves energy efficient analog-mode computation upon digital data. Simulation results for 8-bit, 16-tap FIR filter show that such a design can achieve 10x lower power consumption and 16x lower area as compared to an optimized digital CMOS design at the same technology node. In such a design area saving can be traded off for enhanced power savings, depending upon the target application.","PeriodicalId":127115,"journal":{"name":"International Symposium on Quality Electronic Design (ISQED)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2013.6523609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

CMOS Digital signal processing hardware are power efficient but consume large area, whereas, analog processing units, based on CMOS technology are compact, but power hungry. Emerging magneto-metallic spin-torque devices like domain wall magnets can however perform analog-mode computation like summation and thresholding at ultra low voltage. Such devices can be exploited in designing spin-CMOS hybrid analog processing units that are compact as well as low power. In this work we present a mixed-mode signal processing scheme employing “domain wall neurons” that involves energy efficient analog-mode computation upon digital data. Simulation results for 8-bit, 16-tap FIR filter show that such a design can achieve 10x lower power consumption and 16x lower area as compared to an optimized digital CMOS design at the same technology node. In such a design area saving can be traded off for enhanced power savings, depending upon the target application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自旋神经元的低功耗和紧凑的混合模式信号处理硬件
数字信号处理硬件节能,但占用面积大,而基于CMOS技术的模拟处理单元紧凑,但耗电大。然而,新兴的磁金属自旋力矩器件,如畴壁磁体,可以在超低电压下进行模拟模式计算,如求和和阈值。这种器件可用于设计紧凑和低功耗的自旋- cmos混合模拟处理单元。在这项工作中,我们提出了一种采用“域壁神经元”的混合模式信号处理方案,该方案涉及对数字数据进行节能模拟模式计算。对8位16分接FIR滤波器的仿真结果表明,在相同的技术节点上,与优化的数字CMOS设计相比,这种设计可以实现低10倍的功耗和低16倍的面积。在这样的设计领域中,根据目标应用程序的不同,可以用节省来换取增强的电力节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast FPGA-based fault injection tool for embedded processors Effective thermal control techniques for liquid-cooled 3D multi-core processors Analysis and reliability test to improve the data retention performance of EPROM circuits Increasing the security level of analog IPs by using a dedicated vulnerability analysis methodology Easy-to-build Arbiter Physical Unclonable Function with enhanced challenge/response set
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1