The Effect of Interfacial Polarization on the Energy Density of Ferroelectric Glass-Ceramics

M. Pan, E. Gorzkowski, B. Bender, C. Wu
{"title":"The Effect of Interfacial Polarization on the Energy Density of Ferroelectric Glass-Ceramics","authors":"M. Pan, E. Gorzkowski, B. Bender, C. Wu","doi":"10.1109/ISAF.2006.4387824","DOIUrl":null,"url":null,"abstract":"In the last two years, the US Naval Research Laboratory has been able to synthesize barium strontium titanate (BST)-based glass-ceramics with dielectric breakdown strength as high as 800 kV/cm and dielectric constant up to 1200. Unfortunately, the energy density of the candidate glass-ceramics was only ~1 joule/cc when measured using a discharge measurement circuit. Polarization-electric field measurements revealed wide open hysteresis loops, indicating that most of the electrical energy was not released during discharge. Subsequent experiments showed that the buildup of interfacial polarization was the likely cause in this composite dielectric system. Using the Maxwell-Wagner capacitor model, we were able to quantify the dielectric response of composites based on the permittivities and conductivities of the constituent phases. The response was used to plot polarization-electric field hysteresis for energy density predictions. The results indicated that the aluminosilicate glass phase is the major contributor to the interfacial polarization in this glass-ceramic system.","PeriodicalId":441219,"journal":{"name":"2006 15th ieee international symposium on the applications of ferroelectrics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 15th ieee international symposium on the applications of ferroelectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2006.4387824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In the last two years, the US Naval Research Laboratory has been able to synthesize barium strontium titanate (BST)-based glass-ceramics with dielectric breakdown strength as high as 800 kV/cm and dielectric constant up to 1200. Unfortunately, the energy density of the candidate glass-ceramics was only ~1 joule/cc when measured using a discharge measurement circuit. Polarization-electric field measurements revealed wide open hysteresis loops, indicating that most of the electrical energy was not released during discharge. Subsequent experiments showed that the buildup of interfacial polarization was the likely cause in this composite dielectric system. Using the Maxwell-Wagner capacitor model, we were able to quantify the dielectric response of composites based on the permittivities and conductivities of the constituent phases. The response was used to plot polarization-electric field hysteresis for energy density predictions. The results indicated that the aluminosilicate glass phase is the major contributor to the interfacial polarization in this glass-ceramic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
界面极化对铁电玻璃陶瓷能量密度的影响
在过去的两年中,美国海军研究实验室已经能够合成基于钛酸钡锶(BST)的玻璃陶瓷,其介电击穿强度高达800 kV/cm,介电常数高达1200。遗憾的是,当使用放电测量电路测量时,候选玻璃陶瓷的能量密度仅为~1焦耳/cc。极化电场测量显示大开的迟滞回路,表明大部分电能在放电过程中没有释放。随后的实验表明,在这种复合介质体系中,界面极化的形成是可能的原因。利用麦克斯韦-瓦格纳电容模型,我们能够根据组成相的介电常数和电导率来量化复合材料的介电响应。该响应被用于绘制极化电场迟滞以预测能量密度。结果表明,铝硅酸盐玻璃相是该玻璃陶瓷体系中界面极化的主要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dielectric Behavior of PFW-PT Relaxors: Model-Parameters Extraction Synthesis, Structure and Properties of Pulsed Laser Deposited BiFeO3-PbTiO3 Thin Films Application of Dielectric, Ferroelectric and Piezoelectric Thin Film Devices in Mobile Communication and Medical Systems Relaxor Ferroelectric 0.2PZN-0.8PZT(53/47) Thick Films Fabricated Using a MOD Process Fabrication and Characterization of ZnO Films for Biological Sensor Application of FPW Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1