AI-Enabled ECG Combined with Dry Electrode Sensors for Population-Based Screening of Atrial Fibrillation

Alan Kennedy, D. Finlay, R. Bond, D. Guldenring, J. Mclaughlin, Chris Crockford"
{"title":"AI-Enabled ECG Combined with Dry Electrode Sensors for Population-Based Screening of Atrial Fibrillation","authors":"Alan Kennedy, D. Finlay, R. Bond, D. Guldenring, J. Mclaughlin, Chris Crockford\"","doi":"10.22489/CinC.2022.312","DOIUrl":null,"url":null,"abstract":"This study assessed the performance of a deep neural network (PulseAI, Belfast, United Kingdom) used in conjunction with a dry-electrode ECG sensor device (RhythmPad, D&FT, United Kingdom) to detect AF automatically. Simultaneous pairs of 12-lead ECGs and single-lead dry-electrode ECGs were collected from 622 patients. The 12-lead ECGs were manually overread and used as reference diagnoses. Twenty-two patients were confirmed with AF and had an interpretable 12-lead and single-lead dry-electrode ECG recording. The deep neural network analysed the dry-electrode ECGs, and performance was compared to the 12-lead interpretation. Overall, the deep neural network algorithm yielded a sensitivity of 96% (95% CI, 87%-100%), specificity of 99% (95% CI, 98%-100%) and positive predictive value of 81% (95% CI, 66%-96%) for detection of AF episodes. When coupled with dry-electrode ECG sensors, the PulseAI neural network allows for large-scale and low-cost screening for AF. Widespread implementation of this technology may allow for earlier detection, treatment, and management of patients with AF.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study assessed the performance of a deep neural network (PulseAI, Belfast, United Kingdom) used in conjunction with a dry-electrode ECG sensor device (RhythmPad, D&FT, United Kingdom) to detect AF automatically. Simultaneous pairs of 12-lead ECGs and single-lead dry-electrode ECGs were collected from 622 patients. The 12-lead ECGs were manually overread and used as reference diagnoses. Twenty-two patients were confirmed with AF and had an interpretable 12-lead and single-lead dry-electrode ECG recording. The deep neural network analysed the dry-electrode ECGs, and performance was compared to the 12-lead interpretation. Overall, the deep neural network algorithm yielded a sensitivity of 96% (95% CI, 87%-100%), specificity of 99% (95% CI, 98%-100%) and positive predictive value of 81% (95% CI, 66%-96%) for detection of AF episodes. When coupled with dry-electrode ECG sensors, the PulseAI neural network allows for large-scale and low-cost screening for AF. Widespread implementation of this technology may allow for earlier detection, treatment, and management of patients with AF.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能心电图结合干电极传感器用于人群心房颤动筛查
本研究评估了深度神经网络(PulseAI,贝尔法斯特,英国)与干电极心电传感器设备(RhythmPad, D&FT,英国)结合使用来自动检测AF的性能。对622例患者同时采集12导联心电图和单导联干电极心电图。12导联心电图被人工过读并用作参考诊断。22例患者被确诊为房颤,并有可解释的12导联和单导联干电极心电图记录。深度神经网络分析了干电极心电图,并将其性能与12导联解释进行了比较。总体而言,深度神经网络算法检测AF发作的灵敏度为96% (95% CI, 87%-100%),特异性为99% (95% CI, 98%-100%),阳性预测值为81% (95% CI, 66%-96%)。当与干电极ECG传感器相结合时,PulseAI神经网络可以进行大规模和低成本的房颤筛查。该技术的广泛应用可以使房颤患者的早期检测、治疗和管理成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1