Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers

D. Thin, N. Nguyen
{"title":"Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers","authors":"D. Thin, N. Nguyen","doi":"10.25073/2588-1086/vnucsce.662","DOIUrl":null,"url":null,"abstract":"In recent years, Aspect-based sentiment analysis (ABSA) has received increasing attention from the scientific community for Vietnamese language. However, most previous studies solved various subtasks in ABSA based on machine learning, deep learning and transformer-based architectures in a classification way. Recently, the release of pre-trained sequence-to-sequence brings a new approach to address the ABSA as a text generation problem for Vietnamese ABSA tasks. In this paper, we formulate the Aspect-category based sentiment analysis task as the conditional text generation task and investigate different unified generative transformer-based models. To represent the labels in a natural sentence, we apply a simple statistical method and observation of the commenting style. We conduct experiments on two benchmark datasets. As a result, our model achieved new state-of-the-art results with the micro F1-score of 75.53% and 86.60% for the two datasets with different levels for the restaurant domain. In addition, our experimental results achieved the best score for the smartphone domain with the macro F1-score of 81.10%.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Aspect-based sentiment analysis (ABSA) has received increasing attention from the scientific community for Vietnamese language. However, most previous studies solved various subtasks in ABSA based on machine learning, deep learning and transformer-based architectures in a classification way. Recently, the release of pre-trained sequence-to-sequence brings a new approach to address the ABSA as a text generation problem for Vietnamese ABSA tasks. In this paper, we formulate the Aspect-category based sentiment analysis task as the conditional text generation task and investigate different unified generative transformer-based models. To represent the labels in a natural sentence, we apply a simple statistical method and observation of the commenting style. We conduct experiments on two benchmark datasets. As a result, our model achieved new state-of-the-art results with the micro F1-score of 75.53% and 86.60% for the two datasets with different levels for the restaurant domain. In addition, our experimental results achieved the best score for the smartphone domain with the macro F1-score of 81.10%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于方面分类的统一序对序传输变压器情感分析
近年来,基于方面的情感分析(ABSA)越来越受到越南语科学界的关注。然而,以往的研究大多以分类的方式解决了基于机器学习、深度学习和基于变压器的体系结构的ABSA中的各种子任务。最近,预训练序列到序列的发布带来了一种新的方法来解决越南ABSA任务的ABSA文本生成问题。本文提出了基于方面类别的情感分析任务作为条件文本生成任务,并研究了不同的统一的基于生成转换的模型。为了表示自然句子中的标签,我们采用了简单的统计方法和对评论风格的观察。我们在两个基准数据集上进行了实验。结果,我们的模型获得了新的最先进的结果,对于餐馆领域的两个不同级别的数据集,微观f1得分分别为75.53%和86.60%。此外,我们的实验结果在智能手机领域获得了最好的分数,宏f1得分为81.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1