Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network

Viet-Cuong Ta, Thu Uyen Do
{"title":"Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network","authors":"Viet-Cuong Ta, Thu Uyen Do","doi":"10.25073/2588-1086/vnucsce.659","DOIUrl":null,"url":null,"abstract":"In this paper, we study the efficiency of Graph Transformer Network for noisy label propagation in the task of classifying video anomaly actions. Given a weak supervised dataset, our methods focus on improving the quality of generated labels and use the labels for training a video classifier with deep network. From a full-length video, the anomaly properties of each segmented video can be decided through their relationship with other video. Therefore, we employ a label propagation mechanism with Graph Transformer Network. Our network combines both the feature-based relationship and temporal-based relationship to project the output features of the anomaly video to a hidden dimension. By learning in the new dimension, the video classifier can improve the quality of noisy, generated labels. Our experiments on three benchmark dataset show that the accuracy of our methods are better and more stable than other tested baselines.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the efficiency of Graph Transformer Network for noisy label propagation in the task of classifying video anomaly actions. Given a weak supervised dataset, our methods focus on improving the quality of generated labels and use the labels for training a video classifier with deep network. From a full-length video, the anomaly properties of each segmented video can be decided through their relationship with other video. Therefore, we employ a label propagation mechanism with Graph Transformer Network. Our network combines both the feature-based relationship and temporal-based relationship to project the output features of the anomaly video to a hidden dimension. By learning in the new dimension, the video classifier can improve the quality of noisy, generated labels. Our experiments on three benchmark dataset show that the accuracy of our methods are better and more stable than other tested baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图变换网络的视频异常检测中的噪声标签传播
本文研究了图变换网络在视频异常动作分类任务中的噪声标签传播效率。给定一个弱监督数据集,我们的方法侧重于提高生成标签的质量,并使用这些标签训练深度网络视频分类器。从一个完整的视频中,可以通过每个分段视频与其他视频的关系来判断其异常属性。因此,我们在图转换网络中采用了一种标签传播机制。我们的网络结合了基于特征的关系和基于时间的关系,将异常视频的输出特征投影到隐藏维度。通过在新的维度上学习,视频分类器可以提高生成的有噪声标签的质量。我们在三个基准数据集上的实验表明,我们的方法比其他测试基线的准确性更好,更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aspect-Category based Sentiment Analysis with Unified Sequence-To-Sequence Transfer Transformers A Bandwidth-Efficient High-Performance RTL-Microarchitecture of 2D-Convolution for Deep Neural Networks Noisy-label propagation for Video Anomaly Detection with Graph Transformer Network FRSL: A Domain Specific Language to Specify Functional Requirements A Contract-Based Specification Method for Model Transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1