{"title":"Quantum programming: Working with IBM’S qiskit tool","authors":"K. Neha, A. .","doi":"10.58414/scientifictemper.2023.14.1.11","DOIUrl":null,"url":null,"abstract":"One of the greatest technological advancements in the last century lies in digital computer science. The idea of storing information and performing complicated calculations with the help of bits, i.e., 0 and 1. But due to a sudden surge in data, the classical computer system has been becoming weak in data processing. Quantum computers offer promising substantial speedup over classical computers for many applications. Quantum chip fabrication has made remarkable gains in recent years, with the number of qubits and fidelity growing. In general computing, a binary digit is the smallest unit of information or a bit. “In quantum computing, the term Qubit (Quantum Bit) serves the exact function of the term bit.” IBM Research released the IBMQ Experience in 2018, the first quantum computer that anyone can use and make accessible to a huge audience of different countries through cloud access. IBM also introduced the tool QISKIT (Quantum information software kit), which enables teachers, researchers, and developers to write coding and run their coding on quantum machines. It also includes different packages of quantum computing. In this paper, the author has discussed different steps to install qiskit. Mainly this paper focused on the “programming and application side of quantum computing.” Qiskit tools used in the python programming language. The “quantum circuits” are fabricated with the use of quantum gates and favorable algorithms with less execution time","PeriodicalId":443629,"journal":{"name":"THE SCIENTIFIC TEMPER","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE SCIENTIFIC TEMPER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58414/scientifictemper.2023.14.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
One of the greatest technological advancements in the last century lies in digital computer science. The idea of storing information and performing complicated calculations with the help of bits, i.e., 0 and 1. But due to a sudden surge in data, the classical computer system has been becoming weak in data processing. Quantum computers offer promising substantial speedup over classical computers for many applications. Quantum chip fabrication has made remarkable gains in recent years, with the number of qubits and fidelity growing. In general computing, a binary digit is the smallest unit of information or a bit. “In quantum computing, the term Qubit (Quantum Bit) serves the exact function of the term bit.” IBM Research released the IBMQ Experience in 2018, the first quantum computer that anyone can use and make accessible to a huge audience of different countries through cloud access. IBM also introduced the tool QISKIT (Quantum information software kit), which enables teachers, researchers, and developers to write coding and run their coding on quantum machines. It also includes different packages of quantum computing. In this paper, the author has discussed different steps to install qiskit. Mainly this paper focused on the “programming and application side of quantum computing.” Qiskit tools used in the python programming language. The “quantum circuits” are fabricated with the use of quantum gates and favorable algorithms with less execution time