The BIR database – Identifying typographic emphasis in list-like historical documents

Anna Scius-Bertrand, Simon Gabay, Juliette Janes, L. Petkovic, Caroline Corbieres, Thibault Clérice
{"title":"The BIR database – Identifying typographic emphasis in list-like historical documents","authors":"Anna Scius-Bertrand, Simon Gabay, Juliette Janes, L. Petkovic, Caroline Corbieres, Thibault Clérice","doi":"10.1145/3476887.3476913","DOIUrl":null,"url":null,"abstract":"Layout analysis and optical character recognition have become traditional tasks for processing historical prints, but are now insufficient. Additional information is found in typographic emphasis, such as bold and italic letters. They carry semantic meaning (titles, emphasis...) and also outline the structure of the page (entries, sub-parts...). Retrieving such data is therefore crucial for information extraction and automatic document structuring. In this paper, we introduce the Bold-Italic-Regular (BIR) database, which contains 285 pages of scanned, list-like historical prints that have been annotated at word level with bold and italic emphasis. Baseline results are provided for word detection and style classification using state-of-the-art deep neural network models, highlighting promising possibilities, such as near-human performance for isolated word classification, but also demonstrating limitations for the task at hand.","PeriodicalId":166776,"journal":{"name":"The 6th International Workshop on Historical Document Imaging and Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 6th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476887.3476913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Layout analysis and optical character recognition have become traditional tasks for processing historical prints, but are now insufficient. Additional information is found in typographic emphasis, such as bold and italic letters. They carry semantic meaning (titles, emphasis...) and also outline the structure of the page (entries, sub-parts...). Retrieving such data is therefore crucial for information extraction and automatic document structuring. In this paper, we introduce the Bold-Italic-Regular (BIR) database, which contains 285 pages of scanned, list-like historical prints that have been annotated at word level with bold and italic emphasis. Baseline results are provided for word detection and style classification using state-of-the-art deep neural network models, highlighting promising possibilities, such as near-human performance for isolated word classification, but also demonstrating limitations for the task at hand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BIR数据库——在类似列表的历史文档中识别排版重点
版面分析和光学字符识别已成为处理历史印刷品的传统任务,但目前还不够。在排版强调中可以找到其他信息,例如粗体和斜体字母。它们承载着语义(标题、重点等),也勾勒出页面的结构(条目、子部分等)。因此,检索这些数据对于信息提取和自动文档结构是至关重要的。在本文中,我们介绍了粗体-斜体-正则(BIR)数据库,它包含285页扫描的,类似于列表的历史印刷品,这些印刷品已经在单词级别用粗体和斜体进行了注释。使用最先进的深度神经网络模型为单词检测和风格分类提供了基线结果,突出了有希望的可能性,例如孤立单词分类的接近人类的性能,但也展示了手头任务的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Detection and Recognition by using CNNs in the Austro-Hungarian Historical Military Mapping Survey The BIR database – Identifying typographic emphasis in list-like historical documents Visual Analysis of Chapbooks Printed in Scotland BiblIA - a General Model for Medieval Hebrew Manuscripts and an Open Annotated Dataset Generalized Template Matching for Semi-structured Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1