Generalized Template Matching for Semi-structured Text

G. Nagy
{"title":"Generalized Template Matching for Semi-structured Text","authors":"G. Nagy","doi":"10.1145/3476887.3476895","DOIUrl":null,"url":null,"abstract":"Conventional template matching for named entity recognition on book-length text strings is generalized by allowing search phrases to capture distant tokens. Combined with word-type tagging and format variants (alternative name/date formats), a few initial templates (class—search-phrase—extract-phrase triples) can label most of the significant tokens. The program then uses its book-length statistics of tag-label associations to suggest candidate text for further template construction. The method serves as a preprocessor for error-free extraction of semantic relations from text obeying explicit semi-structure constraints. On three sample books of genealogical records, an F-measure of over 0.99 was achieved with less than 3 hours’ user time on each book.","PeriodicalId":166776,"journal":{"name":"The 6th International Workshop on Historical Document Imaging and Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 6th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476887.3476895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional template matching for named entity recognition on book-length text strings is generalized by allowing search phrases to capture distant tokens. Combined with word-type tagging and format variants (alternative name/date formats), a few initial templates (class—search-phrase—extract-phrase triples) can label most of the significant tokens. The program then uses its book-length statistics of tag-label associations to suggest candidate text for further template construction. The method serves as a preprocessor for error-free extraction of semantic relations from text obeying explicit semi-structure constraints. On three sample books of genealogical records, an F-measure of over 0.99 was achieved with less than 3 hours’ user time on each book.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半结构化文本的广义模板匹配
通过允许搜索短语捕获远程标记,对书本长度文本字符串上命名实体识别的传统模板匹配进行了推广。结合单词类型标记和格式变体(备选名称/日期格式),几个初始模板(类-搜索-短语-提取-短语三元组)可以标记大多数重要的标记。然后,该程序使用其标签-标签关联的书籍长度统计数据来建议候选文本,以便进一步构建模板。该方法可以作为一个预处理程序,从遵循明确的半结构约束的文本中无错误地提取语义关系。在三本家谱样书中,用户在每本书上的时间少于3小时,f测量值超过0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Detection and Recognition by using CNNs in the Austro-Hungarian Historical Military Mapping Survey The BIR database – Identifying typographic emphasis in list-like historical documents Visual Analysis of Chapbooks Printed in Scotland BiblIA - a General Model for Medieval Hebrew Manuscripts and an Open Annotated Dataset Generalized Template Matching for Semi-structured Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1