2T Mechanically Stacked Perovskite/Si tandem Cells Beyond 28%: the Role of 2D Materials in Perovskite Top Cells Coupled with a Commercially Available Bifacial c-Si Heterojunction Cell

A. Agresti, S. Pescetelli, F. Matteocci, Erica Magliano, E. Nonni, G. Bengasi, Carmelo Connelli, C. Gerardi, H. Pazniak, S. Bellani, F. Bonaccorso, F. Bizzarri, M. Foti, A. Di Carlo
{"title":"2T Mechanically Stacked Perovskite/Si tandem Cells Beyond 28%: the Role of 2D Materials in Perovskite Top Cells Coupled with a Commercially Available Bifacial c-Si Heterojunction Cell","authors":"A. Agresti, S. Pescetelli, F. Matteocci, Erica Magliano, E. Nonni, G. Bengasi, Carmelo Connelli, C. Gerardi, H. Pazniak, S. Bellani, F. Bonaccorso, F. Bizzarri, M. Foti, A. Di Carlo","doi":"10.1109/pvsc48317.2022.9938612","DOIUrl":null,"url":null,"abstract":"Perovskite/Silicon tandem technology represents a promising route to achieve 30% power conversion efficiency, by ensuring low levelized costs energy while being competitive with the already commercialized photovoltaic (PV) technologies. Despite the impressive results demonstrated employing a two-terminal (2T) monolithic architecture, the use of record efficiency amorphous/crystalline silicon heterojunction (Si-HJT) cells with micrometer-sized textured front surface, strongly limits the possibility to perform high-temperature and solution processing of the top perovskite cell. To overcome this limitation, we develop a tandem device structure consisting in a mechanically stacked 2T perovskite/silicon tandem solar cell, with the sub-cells independently fabricated, optimized, and subsequently coupled by contacting the back electrode of the mesoscopic perovskite top cell with the texturized and metalized front contact of the silicon bottom cell. The possibility to separately optimize the two sub-cells allows to carefully choose the most promising device structure for both top and bottom cells. Indeed, semi-transparent perovskite top cell performance is boosted through a rational use of bi-dimensional materials (graphene, MXenes and functionalized MoS2) to tune the device interfaces. In addition, a protective buffer layer (PBL) based on MoO3 thin film is used to prevent damages induced by the transparent electrode sputtering deposition over the hole transporting layer. At the same time, a textured amorphous/crystalline silicon heterojunction (c-Si HTJ) cell fabricated with an in-line production process is used as state of art bottom cell. The tandem perovskite/Si tandem device demonstrates remarkable power conversion efficiency of 28%.","PeriodicalId":435386,"journal":{"name":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc48317.2022.9938612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite/Silicon tandem technology represents a promising route to achieve 30% power conversion efficiency, by ensuring low levelized costs energy while being competitive with the already commercialized photovoltaic (PV) technologies. Despite the impressive results demonstrated employing a two-terminal (2T) monolithic architecture, the use of record efficiency amorphous/crystalline silicon heterojunction (Si-HJT) cells with micrometer-sized textured front surface, strongly limits the possibility to perform high-temperature and solution processing of the top perovskite cell. To overcome this limitation, we develop a tandem device structure consisting in a mechanically stacked 2T perovskite/silicon tandem solar cell, with the sub-cells independently fabricated, optimized, and subsequently coupled by contacting the back electrode of the mesoscopic perovskite top cell with the texturized and metalized front contact of the silicon bottom cell. The possibility to separately optimize the two sub-cells allows to carefully choose the most promising device structure for both top and bottom cells. Indeed, semi-transparent perovskite top cell performance is boosted through a rational use of bi-dimensional materials (graphene, MXenes and functionalized MoS2) to tune the device interfaces. In addition, a protective buffer layer (PBL) based on MoO3 thin film is used to prevent damages induced by the transparent electrode sputtering deposition over the hole transporting layer. At the same time, a textured amorphous/crystalline silicon heterojunction (c-Si HTJ) cell fabricated with an in-line production process is used as state of art bottom cell. The tandem perovskite/Si tandem device demonstrates remarkable power conversion efficiency of 28%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超过28%的2T机械堆叠钙钛矿/硅串联电池:2D材料在钙钛矿顶部电池与市售双面c-Si异质结电池耦合中的作用
钙钛矿/硅串联技术代表了一条很有前途的途径,通过确保低水平成本的能源,同时与已经商业化的光伏(PV)技术竞争,实现30%的电力转换效率。尽管采用双端(2T)单片结构证明了令人印象深刻的结果,但使用具有微米尺寸纹理前表面的创纪录效率非晶/晶体硅异质结(Si-HJT)电池,强烈限制了对顶部钙钛矿电池进行高温和溶液处理的可能性。为了克服这一限制,我们开发了一种串联装置结构,由机械堆叠的2T钙钛矿/硅串联太阳能电池组成,子电池独立制造,优化,随后通过介孔钙钛矿顶部电池的后电极与硅底部电池的纹理化和金属化的前接触进行耦合。单独优化两个子单元的可能性允许为顶部和底部单元仔细选择最有前途的器件结构。事实上,通过合理使用二维材料(石墨烯、MXenes和功能化MoS2)来调整器件接口,可以提高半透明钙钛矿顶部电池的性能。此外,利用基于MoO3薄膜的保护缓冲层(PBL)来防止透明电极溅射沉积在空穴传输层上造成的损伤。与此同时,采用在线生产工艺制备的非晶/晶硅异质结(c-Si HTJ)电池作为最先进的底电池。钙钛矿/硅串联装置的功率转换效率达到28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paving the Way to Building-Integrated Translucent Tandem Photovoltaics: Process Optimization and Transfer to Perovskite-Perovskite 2-Terminal Tandem Cells A Silicon learning curve and polysilicon requirements for broad-electrification with photovoltaics by 2050 Effect of Metal Halides Treatment on High Throughput Low Temperature CIGS Solar Cells Three general methods for predicting bifacial photovoltaic performance including spectral albedo Diffraction-optimized surface structures for enhanced light harvesting in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1