Evaluating error functions for robust active appearance models

B. Theobald, I. Matthews, Simon Baker
{"title":"Evaluating error functions for robust active appearance models","authors":"B. Theobald, I. Matthews, Simon Baker","doi":"10.1109/FGR.2006.38","DOIUrl":null,"url":null,"abstract":"Active appearance models (AAMs) are generative parametric models commonly used to track faces in video sequences. A limitation of AAMs is they are not robust to occlusion. A recent extension reformulated the search as an iteratively re-weighted least-squares problem. In this paper we focus on the choice of error function for use in a robust AAM search. We evaluate eight error functions using two performance metrics: accuracy of occlusion detection and fitting robustness. We show for any reasonable error function the performance in terms of occlusion detection is the same. However, this does not mean that fitting performance is the same. We describe experiments for measuring fitting robustness for images containing real occlusion. The best approach assumes the residuals at each pixel are Gaussianally distributed, then estimates the parameters of the distribution from images that do not contain occlusion. In each iteration of the search, the error image is used to sample these distributions to obtain the pixel weights","PeriodicalId":109260,"journal":{"name":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Automatic Face and Gesture Recognition (FGR06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGR.2006.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Active appearance models (AAMs) are generative parametric models commonly used to track faces in video sequences. A limitation of AAMs is they are not robust to occlusion. A recent extension reformulated the search as an iteratively re-weighted least-squares problem. In this paper we focus on the choice of error function for use in a robust AAM search. We evaluate eight error functions using two performance metrics: accuracy of occlusion detection and fitting robustness. We show for any reasonable error function the performance in terms of occlusion detection is the same. However, this does not mean that fitting performance is the same. We describe experiments for measuring fitting robustness for images containing real occlusion. The best approach assumes the residuals at each pixel are Gaussianally distributed, then estimates the parameters of the distribution from images that do not contain occlusion. In each iteration of the search, the error image is used to sample these distributions to obtain the pixel weights
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估鲁棒主动外观模型的误差函数
活动外观模型(AAMs)是一种常用的生成参数模型,用于跟踪视频序列中的人脸。aam的一个限制是它们对遮挡的鲁棒性不强。最近的扩展将搜索重新表述为迭代加权最小二乘问题。在本文中,我们重点研究了在鲁棒AAM搜索中使用的误差函数的选择。我们使用两个性能指标来评估8个误差函数:遮挡检测的准确性和拟合的鲁棒性。我们表明,对于任何合理的误差函数,在遮挡检测方面的性能都是相同的。然而,这并不意味着拟合性能是相同的。我们描述了测量包含真实遮挡的图像的拟合鲁棒性的实验。最好的方法是假设每个像素的残差是高斯分布的,然后从不包含遮挡的图像中估计分布的参数。在每次搜索迭代中,使用误差图像对这些分布进行采样以获得像素权重
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking using dynamic programming for appearance-based sign language recognition Multi-view face recognition by nonlinear dimensionality reduction and generalized linear models Face recognition by projection-based 3D normalization and shading subspace orthogonalization Hierarchical ensemble of Gabor Fisher classifier for face recognition Reliable and fast tracking of faces under varying pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1