{"title":"Analysis of Tuberculosis Disease Spreading Pattern in Muara Enim District using KNN Algorithm","authors":"Rahmat Budiarto, Hilwa Lelisa, Y. S. Triana","doi":"10.1145/3557738.3557853","DOIUrl":null,"url":null,"abstract":"Tuberculosis (TB) is a type of infectious disease caused by Mycobacterium tuberculosis, which not only attacks the lungs, but can also attack the bones, intestines, or glands. During the Covid-19 pandemic, TB cases in Indonesia also increased. TB and Covid-19 had the similar symptoms such as cough, fever, and breathing difficulty, so that TB sufferers must be given serious treatment to avoid Covid-19. In predicting a disease, it is important for health workers to make decisions, thus it is necessary to do an early diagnosis in order to reduce the transmission of TB in the community. There are many algorithm methods used in conducting data analysis, for this study the authors use K-Nearest Neighbor (K-NN) algorithm and Logistic Regression as comparison. Experimental results using available dataset collected from health centers in Muara Enim District of South Sumatra Province show that the K-NN algorithm provides the best accuracy of 89% on dataset with training to testing data ratio of 80%:20%, while the Logistic Regression provides the best accuracy of 96% on 70%:30% ratio. The analysis mechanism discussed in this paper may be considered as tool for the authority to predict and take necessary actions to prevent the TB spreading.","PeriodicalId":178760,"journal":{"name":"Proceedings of the 2022 International Conference on Engineering and Information Technology for Sustainable Industry","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Engineering and Information Technology for Sustainable Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3557738.3557853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Tuberculosis (TB) is a type of infectious disease caused by Mycobacterium tuberculosis, which not only attacks the lungs, but can also attack the bones, intestines, or glands. During the Covid-19 pandemic, TB cases in Indonesia also increased. TB and Covid-19 had the similar symptoms such as cough, fever, and breathing difficulty, so that TB sufferers must be given serious treatment to avoid Covid-19. In predicting a disease, it is important for health workers to make decisions, thus it is necessary to do an early diagnosis in order to reduce the transmission of TB in the community. There are many algorithm methods used in conducting data analysis, for this study the authors use K-Nearest Neighbor (K-NN) algorithm and Logistic Regression as comparison. Experimental results using available dataset collected from health centers in Muara Enim District of South Sumatra Province show that the K-NN algorithm provides the best accuracy of 89% on dataset with training to testing data ratio of 80%:20%, while the Logistic Regression provides the best accuracy of 96% on 70%:30% ratio. The analysis mechanism discussed in this paper may be considered as tool for the authority to predict and take necessary actions to prevent the TB spreading.