Intelligent road detection based on local averaging classifier in real-time environments

P. Jeong, S. Nedevschi
{"title":"Intelligent road detection based on local averaging classifier in real-time environments","authors":"P. Jeong, S. Nedevschi","doi":"10.1109/ICIAP.2003.1234057","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to obtain real-time classification for robust road region detection in both highway and rural way environments. This approach uses a local averaging classifier relying on decision trees, and in case of altered or noisy road regions, a special intelligent detection procedure. The local averaging classifier based on the decision tree provides real-time road/nonroad classification. The main idea is that the neighbor feature vectors around the control point are analyzed, and the control point has conditioned feature vector by the decision tree. However, this algorithm performs poorly in case of noisy road regions. To overcome this problem, we use the intelligent detection method for missing road regions. Let us assume that there are two problematic situations in the highways: in the first one, a lane marking is missing. in the second one, both lane markings are missing. In the first case, we can predict where the other line marking is, and apple the ordinary K-means onto that region. In the second case, we split the image into six parts, and the ordinary K-means is applied onto the most left and right four regions. In the case of rural ways, we also split the image into six parts, and apply the ordinary K-means as in the second situation of the highways. The merits of the proposed method are that it provides efficient, accurate, and low cost classification in the real-time application.","PeriodicalId":218076,"journal":{"name":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th International Conference on Image Analysis and Processing, 2003.Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2003.1234057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The aim of this paper is to obtain real-time classification for robust road region detection in both highway and rural way environments. This approach uses a local averaging classifier relying on decision trees, and in case of altered or noisy road regions, a special intelligent detection procedure. The local averaging classifier based on the decision tree provides real-time road/nonroad classification. The main idea is that the neighbor feature vectors around the control point are analyzed, and the control point has conditioned feature vector by the decision tree. However, this algorithm performs poorly in case of noisy road regions. To overcome this problem, we use the intelligent detection method for missing road regions. Let us assume that there are two problematic situations in the highways: in the first one, a lane marking is missing. in the second one, both lane markings are missing. In the first case, we can predict where the other line marking is, and apple the ordinary K-means onto that region. In the second case, we split the image into six parts, and the ordinary K-means is applied onto the most left and right four regions. In the case of rural ways, we also split the image into six parts, and apply the ordinary K-means as in the second situation of the highways. The merits of the proposed method are that it provides efficient, accurate, and low cost classification in the real-time application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时环境下基于局部平均分类器的智能道路检测
本文的目的是在高速公路和农村道路环境中获得实时分类的鲁棒道路区域检测。该方法使用依赖于决策树的局部平均分类器,并且在道路区域发生变化或有噪声的情况下,使用特殊的智能检测程序。基于决策树的局部平均分类器提供实时的道路/非道路分类。其主要思想是对控制点周围的邻近特征向量进行分析,并通过决策树对控制点的特征向量进行条件化。然而,该算法在有噪声的道路区域表现不佳。为了克服这一问题,我们采用了对道路缺失区域的智能检测方法。让我们假设高速公路上有两种有问题的情况:在第一种情况下,车道标记缺失。第二张图中,两个车道标记都不见了。在第一种情况下,我们可以预测另一条线标记的位置,并将普通k均值应用到该区域。在第二种情况下,我们将图像分成六个部分,并将普通K-means应用于最左边和最右边的四个区域。在农村道路的情况下,我们也将图像分成六个部分,并应用普通的K-means,就像在公路的第二种情况一样。该方法在实时应用中具有高效、准确、低成本的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification method for colored natural textures using Gabor filtering Perceptive visual texture classification and retrieval Deferring range/domain comparisons in fractal image compression Modeling the world: the virtualization pipeline A graphics hardware implementation of the generalized Hough transform for fast object recognition, scale, and 3D pose detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1