L. Hutin, B. Bertrand, R. Maurand, M. Urdampilleta, B. Jadot, H. Bohuslavskyi, L. Bourdet, Y. Niquet, X. Jehl, S. Barraud, C. Bäuerle, T. Meunier, M. Sanquer, S. de Franceschi, M. Vinet
{"title":"Harnessing Si CMOS technology for quantum information","authors":"L. Hutin, B. Bertrand, R. Maurand, M. Urdampilleta, B. Jadot, H. Bohuslavskyi, L. Bourdet, Y. Niquet, X. Jehl, S. Barraud, C. Bäuerle, T. Meunier, M. Sanquer, S. de Franceschi, M. Vinet","doi":"10.23919/SNW.2017.8242337","DOIUrl":null,"url":null,"abstract":"We present some recent progress towards the implementation of the basic building blocks of quantum information processing derived from a Si CMOS technology platform. In our approach, characterized by an emphasis on foundry compatibility in terms of processes and materials, the so-called qubits are encoded in the spin degree of freedom of gate-confined elementary charges. After introducing various qubit manipulation, coupling and readout schemes, we discuss some prospects for scalability, and in particular some potential advantages of the FDSOI technology.","PeriodicalId":424135,"journal":{"name":"2017 Silicon Nanoelectronics Workshop (SNW)","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2017.8242337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present some recent progress towards the implementation of the basic building blocks of quantum information processing derived from a Si CMOS technology platform. In our approach, characterized by an emphasis on foundry compatibility in terms of processes and materials, the so-called qubits are encoded in the spin degree of freedom of gate-confined elementary charges. After introducing various qubit manipulation, coupling and readout schemes, we discuss some prospects for scalability, and in particular some potential advantages of the FDSOI technology.