Chuang Lu, A. Ba, Yao-Hong Liu, Xiaoyang Wang, Christian Bachmann, K. Philips
{"title":"17.4 A sub-mW antenna-impedance detection using electrical balance for single-step on-chip tunable matching in wearable/implantable applications","authors":"Chuang Lu, A. Ba, Yao-Hong Liu, Xiaoyang Wang, Christian Bachmann, K. Philips","doi":"10.1109/ISSCC.2017.7870379","DOIUrl":null,"url":null,"abstract":"Wearable/implantable devices, e.g., heart-rate-monitor straps and implanted wireless sensors, need to be ultra-low-power (ULP), compact, and also robust against the proximity effect, which can significantly degrade the antenna and front-end performance and hence battery lifetime. A fully integrated adaptive front-end with a tunable matching network (TMN) using low-power and fast impedance detection is highly desirable for robust and efficient operation.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Wearable/implantable devices, e.g., heart-rate-monitor straps and implanted wireless sensors, need to be ultra-low-power (ULP), compact, and also robust against the proximity effect, which can significantly degrade the antenna and front-end performance and hence battery lifetime. A fully integrated adaptive front-end with a tunable matching network (TMN) using low-power and fast impedance detection is highly desirable for robust and efficient operation.