Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective Numerical Optimisation

P. Bujok, Patrik Kolenovsky
{"title":"Eigen Crossover in Cooperative Model of Evolutionary Algorithms Applied to CEC 2022 Single Objective Numerical Optimisation","authors":"P. Bujok, Patrik Kolenovsky","doi":"10.1109/CEC55065.2022.9870433","DOIUrl":null,"url":null,"abstract":"In this paper, a cooperative model of four well-performing evolutionary algorithms enhanced by Eigen crossover is proposed and applied to a set of problems CEC 2022. The four adaptive algorithms employed in this model are - Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), Differen-tial Evolution with Covariance Matrix Learning and Bimodal Distribution Parameter Setting (CoBiDE), an adaptive variant of jSO, and Differential Evolution With an Individual-Dependent Mechanism (IDE). For the higher efficiency of the cooperative model, a linear population-size reduction mechanism is employed. The model was introduced for CEC 2019. Here, Eigen crossover is applied for each cooperating algorithm. The provided results show that the proposed model of four Evolutionary Algorithms with Eigen crossover (EA4eig) is able to solve ten out of 24 optimisation problems. Moreover, comparing EA4eig with four state-of-the-art variants of adaptive Differential Evolution illustrates the superiority of the newly designed optimiser.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, a cooperative model of four well-performing evolutionary algorithms enhanced by Eigen crossover is proposed and applied to a set of problems CEC 2022. The four adaptive algorithms employed in this model are - Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), Differen-tial Evolution with Covariance Matrix Learning and Bimodal Distribution Parameter Setting (CoBiDE), an adaptive variant of jSO, and Differential Evolution With an Individual-Dependent Mechanism (IDE). For the higher efficiency of the cooperative model, a linear population-size reduction mechanism is employed. The model was introduced for CEC 2019. Here, Eigen crossover is applied for each cooperating algorithm. The provided results show that the proposed model of four Evolutionary Algorithms with Eigen crossover (EA4eig) is able to solve ten out of 24 optimisation problems. Moreover, comparing EA4eig with four state-of-the-art variants of adaptive Differential Evolution illustrates the superiority of the newly designed optimiser.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演化算法协同模型中的特征交叉应用于cec2022单目标数值优化
本文提出了一种基于特征交叉增强的四种性能良好的进化算法的合作模型,并将其应用于CEC 2022问题。该模型采用的四种自适应算法分别是协方差矩阵适应进化策略(CMA-ES)、协方差矩阵学习和双峰分布参数设置的差分进化(CoBiDE)、jSO的自适应变体和个体依赖机制的差分进化(IDE)。为了提高合作模型的效率,采用了线性种群规模缩减机制。该模型是为2019年CEC推出的。在这里,每个协作算法都使用特征交叉。结果表明,基于特征交叉的四种进化算法模型(EA4eig)能够解决24个优化问题中的10个。此外,将EA4eig与四种最先进的自适应差分进化变体进行比较,说明了新设计的优化器的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1