INODE

S. Amer-Yahia, G. Koutrika, Martin Braschler, Diego Calvanese, D. Lanti, Hendrik Lücke-Tieke, A. Mosca, Tarcisio Mendes de Farias, D. Papadopoulos, Yogendra Patil, Guillem Rull, Ellery Smith, Dimitrios Skoutas, S. Subramanian, Kurt Stockinger
{"title":"INODE","authors":"S. Amer-Yahia, G. Koutrika, Martin Braschler, Diego Calvanese, D. Lanti, Hendrik Lücke-Tieke, A. Mosca, Tarcisio Mendes de Farias, D. Papadopoulos, Yogendra Patil, Guillem Rull, Ellery Smith, Dimitrios Skoutas, S. Subramanian, Kurt Stockinger","doi":"10.1145/3516431.3516436","DOIUrl":null,"url":null,"abstract":"A full-fledged data exploration system must combine different access modalities with a powerful concept of guiding the user in the exploration process, by being reactive and anticipative both for data discovery and for data linking. Such systems are a real opportunity for our community to cater to users with different domain and data science expertise. We introduce INODE - an end-to-end data exploration system - that leverages, on the one hand, Machine Learning and, on the other hand, semantics for the purpose of Data Management (DM). Our vision is to develop a classic unified, comprehensive platform that provides extensive access to open datasets, and we demonstrate it in three significant use cases in the fields of Cancer Biomarker Research, Research and Innovation Policy Making, and Astrophysics. INODE offers sustainable services in (a) data modeling and linking, (b) integrated query processing using natural language, (c) guidance, and (d) data exploration through visualization, thus facilitating the user in discovering new insights. We demonstrate that our system is uniquely accessible to a wide range of users from larger scientific communities to the public. Finally, we briefly illustrate how this work paves the way for new research opportunities in DM.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3516431.3516436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A full-fledged data exploration system must combine different access modalities with a powerful concept of guiding the user in the exploration process, by being reactive and anticipative both for data discovery and for data linking. Such systems are a real opportunity for our community to cater to users with different domain and data science expertise. We introduce INODE - an end-to-end data exploration system - that leverages, on the one hand, Machine Learning and, on the other hand, semantics for the purpose of Data Management (DM). Our vision is to develop a classic unified, comprehensive platform that provides extensive access to open datasets, and we demonstrate it in three significant use cases in the fields of Cancer Biomarker Research, Research and Innovation Policy Making, and Astrophysics. INODE offers sustainable services in (a) data modeling and linking, (b) integrated query processing using natural language, (c) guidance, and (d) data exploration through visualization, thus facilitating the user in discovering new insights. We demonstrate that our system is uniquely accessible to a wide range of users from larger scientific communities to the public. Finally, we briefly illustrate how this work paves the way for new research opportunities in DM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
索引节点
一个成熟的数据探索系统必须结合不同的访问模式和引导用户探索过程的强大概念,通过对数据发现和数据链接的反应和预测。这样的系统为我们的社区提供了一个真正的机会,以迎合具有不同领域和数据科学专业知识的用户。我们介绍INODE——一个端到端数据探索系统——它一方面利用机器学习,另一方面利用语义来实现数据管理(DM)。我们的愿景是开发一个经典的、统一的、全面的平台,提供对开放数据集的广泛访问,我们在癌症生物标志物研究、研究与创新政策制定和天体物理学领域的三个重要用例中展示了它。INODE在以下方面提供可持续的服务:(a)数据建模和链接,(b)使用自然语言的集成查询处理,(c)引导,(d)通过可视化进行数据探索,从而促进用户发现新的见解。我们证明了我们的系统对从较大的科学团体到公众的广泛用户是唯一可访问的。最后,我们简要说明了这项工作如何为DM的新研究机会铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1