Mining negative links between data clusters

Rifeng Wang, Gang Chen
{"title":"Mining negative links between data clusters","authors":"Rifeng Wang, Gang Chen","doi":"10.1109/ICCPS.2015.7454219","DOIUrl":null,"url":null,"abstract":"Link discovery (LD) is an important task in data mining for identifying interactions between data groups, or relating in society community networks. A new strategy is designed for mining a new kind of link: negative links between data clusters. The efficiency is gained by pruning strong positive relative items. Negative item is computing with correlation coefficient. The number of the negative item correlation is used to identify the negative links between clusters. These negative links are extremely useful in business fraud, medical treatment and incursion detection. Experiments on real datasets illustrate that our approach is efficient and promising.","PeriodicalId":319991,"journal":{"name":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Communication Problem-Solving (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2015.7454219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Link discovery (LD) is an important task in data mining for identifying interactions between data groups, or relating in society community networks. A new strategy is designed for mining a new kind of link: negative links between data clusters. The efficiency is gained by pruning strong positive relative items. Negative item is computing with correlation coefficient. The number of the negative item correlation is used to identify the negative links between clusters. These negative links are extremely useful in business fraud, medical treatment and incursion detection. Experiments on real datasets illustrate that our approach is efficient and promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘数据集群之间的负链接
链接发现(Link discovery, LD)是数据挖掘中的一项重要任务,用于识别数据组之间的交互,或社会社区网络中的关联。设计了一种新的策略来挖掘一种新的链接:数据簇之间的负链接。效率是通过修剪强正相关项来获得的。负项用相关系数计算。负相关项的数量用于识别集群之间的负联系。这些负面链接在商业欺诈、医疗和入侵检测方面极为有用。在实际数据集上的实验表明,我们的方法是有效的和有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A matching algorithm based on global viewpoint difference rectification for framework imagery Design of microstrip array antenna for angle measurement based on dual-baseline method Throwing-mine detection based on azimuth coherence Analysis and design of dual-feed circularly polarized U-slot microstrip antennas P2P flow classification based on wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1