Self-Repair and Self-Extension by Tightening Screws based on Precise Calculation of Screw Pose of Self-Body with CAD Data and Graph Search with Regrasping a Driver
{"title":"Self-Repair and Self-Extension by Tightening Screws based on Precise Calculation of Screw Pose of Self-Body with CAD Data and Graph Search with Regrasping a Driver","authors":"Takayuki Murooka, K. Okada, M. Inaba","doi":"10.1109/Humanoids43949.2019.9035045","DOIUrl":null,"url":null,"abstract":"In this paper, we propose methods for tightening screws of self-body using a driver, which enable self-repair and self-extension. There are two difficulties for tightening screws of self-body. First, the precise calculation of the screw pose is needed. When calculation with visual images using a camera, the observation error is so high. The merit of the robot is that the robot has CAD data of self-body. There we calculate the precise screw pose with self CAD data. Second, because of the small closed links when tightening screws of self-body, that the robot cannot move the driver for rotating around the screw sometimes happens because inverse kinematics cannot be solved. To solve this problem, we propose a method of tightening motion generation with regrasping a driver if inverse kinematics cannot be solved. With these methods, humanoid robots PR2 and HIRO realized self-repair and self-extension by tightening screws of self-body.","PeriodicalId":404758,"journal":{"name":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids43949.2019.9035045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we propose methods for tightening screws of self-body using a driver, which enable self-repair and self-extension. There are two difficulties for tightening screws of self-body. First, the precise calculation of the screw pose is needed. When calculation with visual images using a camera, the observation error is so high. The merit of the robot is that the robot has CAD data of self-body. There we calculate the precise screw pose with self CAD data. Second, because of the small closed links when tightening screws of self-body, that the robot cannot move the driver for rotating around the screw sometimes happens because inverse kinematics cannot be solved. To solve this problem, we propose a method of tightening motion generation with regrasping a driver if inverse kinematics cannot be solved. With these methods, humanoid robots PR2 and HIRO realized self-repair and self-extension by tightening screws of self-body.