An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms Towards Light Speed Data Processing

Jun Shiomi, T. Ishihara, H. Onodera, A. Shinya, M. Notomi
{"title":"An Integrated Optical Parallel Multiplier Exploiting Approximate Binary Logarithms Towards Light Speed Data Processing","authors":"Jun Shiomi, T. Ishihara, H. Onodera, A. Shinya, M. Notomi","doi":"10.1109/ICRC.2018.8638614","DOIUrl":null,"url":null,"abstract":"The emergence of nanophotonic devices has enabled to design integrated optical circuits for ultra-high speed on-chip signal processing. This paper proposes an optical implementation of an approximate parallel multiplier for two n-bit integers. The key to ultra-high speed processing is to reduce the number of OptoElectric (OE) converters on a critical path since the OE converters dominantly determine the operating speed of the multiplier. For any n, the proposed approximate multiplier has only three OE converters on a critical path with a deterministic error (11% at the worst case). On the other hand, the number of the counterparts of the conventional parallel multiplier increases as $n$ increases, which implies that the proposed multiplier with large $n$ exhibits much better operating speed than the conventional optical parallel multiplier. Numerical evaluation for n = 16 shows that the proposed multiplier exhibits a 106 ps latency which is 49% less than that of the conventional optical multiplier.","PeriodicalId":169413,"journal":{"name":"2018 IEEE International Conference on Rebooting Computing (ICRC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2018.8638614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of nanophotonic devices has enabled to design integrated optical circuits for ultra-high speed on-chip signal processing. This paper proposes an optical implementation of an approximate parallel multiplier for two n-bit integers. The key to ultra-high speed processing is to reduce the number of OptoElectric (OE) converters on a critical path since the OE converters dominantly determine the operating speed of the multiplier. For any n, the proposed approximate multiplier has only three OE converters on a critical path with a deterministic error (11% at the worst case). On the other hand, the number of the counterparts of the conventional parallel multiplier increases as $n$ increases, which implies that the proposed multiplier with large $n$ exhibits much better operating speed than the conventional optical parallel multiplier. Numerical evaluation for n = 16 shows that the proposed multiplier exhibits a 106 ps latency which is 49% less than that of the conventional optical multiplier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用近似二进制对数的集成光学并行乘法器用于光速数据处理
纳米光子器件的出现使得设计超高速片上信号处理的集成光电路成为可能。本文提出了两个n位整数的近似并行乘法器的光学实现。超高速处理的关键是减少关键路径上光电转换器的数量,因为光电转换器主要决定乘法器的工作速度。对于任意n,所提出的近似乘法器在具有确定性误差(最坏情况下为11%)的关键路径上只有三个OE转换器。另一方面,随着$n$的增加,传统的平行乘法器的对应物数量增加,这意味着当$n$较大时,所提出的乘法器比传统的光学平行乘法器具有更好的运算速度。当n = 16时的数值计算表明,所提出的乘法器的延迟为106 ps,比传统光学乘法器的延迟低49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Merge Network for a Non-Von Neumann Accumulate Accelerator in a 3D Chip SC-SD: Towards Low Power Stochastic Computing Using Sigma Delta Streams ICRC 2018 Presented Posters Electric-Field Bit Write-In for Molecular Quantum-Dot Cellular Automata Circuits Thermodynamic Intelligence, a Heretical Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1