A new metric on parallel coordinates and its application for high-dimensional data visualization

Tran Van Long
{"title":"A new metric on parallel coordinates and its application for high-dimensional data visualization","authors":"Tran Van Long","doi":"10.1109/ATC.2015.7388338","DOIUrl":null,"url":null,"abstract":"High-dimensional data visualization is a changing task with many applications in a various fields of sciences. Parallel coordinates is one of the most widely used information visualization technique for multivariate data analysis and high-dimensional geometry. The dimension ordering is an original problem for exploring structures in a high-dimensional data space. In this paper, we propose a new metric for measuring distance between two line-segment on the parallel coordinates. The metric is suitable and effective on the parallel coordinates. We use our metric distance for finding an optimal dimension ordering on the parallel coordinates. Finally, we demonstrate our method can be applied to visualize clusters in high-dimensional data on the parallel coordinates.","PeriodicalId":142783,"journal":{"name":"2015 International Conference on Advanced Technologies for Communications (ATC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATC.2015.7388338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

High-dimensional data visualization is a changing task with many applications in a various fields of sciences. Parallel coordinates is one of the most widely used information visualization technique for multivariate data analysis and high-dimensional geometry. The dimension ordering is an original problem for exploring structures in a high-dimensional data space. In this paper, we propose a new metric for measuring distance between two line-segment on the parallel coordinates. The metric is suitable and effective on the parallel coordinates. We use our metric distance for finding an optimal dimension ordering on the parallel coordinates. Finally, we demonstrate our method can be applied to visualize clusters in high-dimensional data on the parallel coordinates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的平行坐标度量及其在高维数据可视化中的应用
高维数据可视化是一项不断变化的任务,在各个科学领域都有许多应用。并行坐标是多变量数据分析和高维几何信息可视化中应用最广泛的技术之一。维度排序是研究高维数据空间中结构的一个原始问题。本文提出了一种在平行坐标上测量两条线段之间距离的新度量。该度量在平行坐标系上是合适和有效的。我们用度量距离在平行坐标上找到最优的维数排序。最后,我们证明了我们的方法可以应用于高维数据在并行坐标上的聚类可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware/software co-design of power level difference based noise cancellation A study of effectiveness of speech enhancement for cognitive load classification in noisy conditions Simple miniaturized Wilkinson power divider using a compact stub structure A 180-nm CMOS RF transmitter for UHF RFID reader Analyses on the maximum local specific absorption rate of multiple antenna devices in different measurement planes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1