Role of Body Effect on Threshold Voltage of Strained $\mathrm{Si}-\mathrm{Si}_{\mathrm{X}}\mathrm{Ge}_{1-\mathrm{X}}$ MOSFET

S. Mukhopadhyay, A. Deyasi
{"title":"Role of Body Effect on Threshold Voltage of Strained $\\mathrm{Si}-\\mathrm{Si}_{\\mathrm{X}}\\mathrm{Ge}_{1-\\mathrm{X}}$ MOSFET","authors":"S. Mukhopadhyay, A. Deyasi","doi":"10.1109/DEVIC.2019.8783959","DOIUrl":null,"url":null,"abstract":"Role of body effect coefficient on threshold voltage of strained Si/SiGe MOSFET is analytically investigated. Effect of dielectric thickness, doping concentration and dielectric material are computed on the threshold condition both in presence and absence of body effect. Simulation findings reveal that introduction of strained material in otherwise ideal structure enhances carrier mobility which, in turn, reduces threshold voltage. Sharp peak is observed when body effect is taken into account for a particular heterostructure composition due to enhancement of tunneling probability which decrease of barrier potential, and thus carrier flow is augmented. A few results for n-channel MOSFET are also represented to further justify the importance of novelty of the paper. Result also suggests that higher doping or thicker dielectric region leads to depletion mode of operation. An optimized design criterion is evaluated for the minimum threshold under inversion condition.","PeriodicalId":294095,"journal":{"name":"2019 Devices for Integrated Circuit (DevIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Devices for Integrated Circuit (DevIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVIC.2019.8783959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Role of body effect coefficient on threshold voltage of strained Si/SiGe MOSFET is analytically investigated. Effect of dielectric thickness, doping concentration and dielectric material are computed on the threshold condition both in presence and absence of body effect. Simulation findings reveal that introduction of strained material in otherwise ideal structure enhances carrier mobility which, in turn, reduces threshold voltage. Sharp peak is observed when body effect is taken into account for a particular heterostructure composition due to enhancement of tunneling probability which decrease of barrier potential, and thus carrier flow is augmented. A few results for n-channel MOSFET are also represented to further justify the importance of novelty of the paper. Result also suggests that higher doping or thicker dielectric region leads to depletion mode of operation. An optimized design criterion is evaluated for the minimum threshold under inversion condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体效应对应变$\ mathm {Si}-\ mathm {Si}_ \ mathm {X}}\ mathm {Ge}_{1-\ mathm {X}}$ MOSFET阈值电压的影响
分析了体效应系数对应变Si/SiGe MOSFET阈值电压的影响。在存在体效应和不存在体效应的阈值条件下,计算了介质厚度、掺杂浓度和介质材料的影响。模拟结果表明,在理想结构中引入应变材料可以提高载流子迁移率,从而降低阈值电压。当考虑特定异质结构组成的体效应时,由于隧穿概率的增加,势垒势的降低,载流子流量增大,出现了一个尖峰。本文还介绍了n沟道MOSFET的一些结果,进一步证明了本文新颖性的重要性。结果还表明,较高的掺杂或较厚的介电区会导致耗尽模式的工作。给出了在反演条件下最小阈值的优化设计准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Drain Current Model of UTBB SOI MOSFET with lateral dual gates to Suppress Short Channel Effect Effect of AlGaN Back Barrier on InAlN/AlN/GaN E-Mode HEMTs Work-function modulated hetero gate charge plasma TFET to enhance the device performance All-optical Walsh-Hadamard code Generation using MZI Performance Analysis of Staggered Heterojunction based SRG TFET biosensor for health IoT application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1