Neural Network-Based Adaptive Fault-Tolerant Control for a Class of 1-D System with Actuator Failures and Unknown Input Powers

Jiyu Zhu, Qikun Shen
{"title":"Neural Network-Based Adaptive Fault-Tolerant Control for a Class of 1-D System with Actuator Failures and Unknown Input Powers","authors":"Jiyu Zhu, Qikun Shen","doi":"10.1109/ISAS59543.2023.10164361","DOIUrl":null,"url":null,"abstract":"This paper studies fault-tolerant control problem for a class of 1-D nonlinear systems with actuator failures and unknown powers. On the basis of Lyapunov stability theory, an adaptive control strategy is put forward and adopted for offsetting actuator failures to ensure the system’s output can follow reference signal. In existing works, actuator failures occur in nonlinear systems have been addressed. However, the input powers of these systems, especially the powers of controllers are either limited to one or a known positive integer. To relax such restrictions, we consider more general situation where controllers’ input powers are extended to an unknown integer greater than one and both efficiency loss and bias occur in the above actuators. Finally, a numerical example demonstrates the general effectiveness of developed algorithm.","PeriodicalId":199115,"journal":{"name":"2023 6th International Symposium on Autonomous Systems (ISAS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Symposium on Autonomous Systems (ISAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAS59543.2023.10164361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies fault-tolerant control problem for a class of 1-D nonlinear systems with actuator failures and unknown powers. On the basis of Lyapunov stability theory, an adaptive control strategy is put forward and adopted for offsetting actuator failures to ensure the system’s output can follow reference signal. In existing works, actuator failures occur in nonlinear systems have been addressed. However, the input powers of these systems, especially the powers of controllers are either limited to one or a known positive integer. To relax such restrictions, we consider more general situation where controllers’ input powers are extended to an unknown integer greater than one and both efficiency loss and bias occur in the above actuators. Finally, a numerical example demonstrates the general effectiveness of developed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类输入功率未知且致动器失效的一维系统的神经网络自适应容错控制
研究一类非线性系统的容错控制问题,该系统具有执行器故障和未知功率。在李雅普诺夫稳定性理论的基础上,提出了一种自适应控制策略,并采用该策略对执行器故障进行补偿,保证系统输出跟随参考信号。在现有的工作中,非线性系统中发生的执行器故障已经得到了解决。然而,这些系统的输入功率,特别是控制器的功率被限制为1或一个已知的正整数。为了放宽这种限制,我们考虑了更一般的情况,即控制器的输入功率被扩展为大于1的未知整数,并且上述执行器中同时存在效率损失和偏置。最后,通过数值算例验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new type of video text automatic recognition method and its application in film and television works H∞ state feedback control for fuzzy singular Markovian jump systems with constant time delays and impulsive perturbations MMSTP: Multi-modal Spatiotemporal Feature Fusion Network for Precipitation Prediction Digital twin based bearing fault simulation modeling strategy and display dynamics End-to-End Model-Based Gait Recognition with Matching Module Based on Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1