Fast algorithm for estimating the regional mechanical function of the left ventricle from 4D cardiac CT data

Yechiel Lamash, A. Fischer, J. Lessick
{"title":"Fast algorithm for estimating the regional mechanical function of the left ventricle from 4D cardiac CT data","authors":"Yechiel Lamash, A. Fischer, J. Lessick","doi":"10.1109/ISBI.2014.6867903","DOIUrl":null,"url":null,"abstract":"Cardiac pathologies are generally associated with regional ventricular dysfunction. Methods for estimating the regional myocardial motion from cardiac CT image data generally ignore the rotational velocities. Reasons for this include the challenges of sparse image deformation clues, low SNR and the low temporal resolution. In the current study we propose a fast algorithm for evaluating the mechanical function of the left ventricle from cardiac CT data. A compact parametric motion model is used to describe the regional 3D contraction and twist. The algorithm is based on regularized multi-homography image registration. The rotational velocities are estimated and compared to their respective values in the literature, with good agreement. Good performance in classifying the segments as normal or abnormal with respect to expert's visual scores is obtained.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac pathologies are generally associated with regional ventricular dysfunction. Methods for estimating the regional myocardial motion from cardiac CT image data generally ignore the rotational velocities. Reasons for this include the challenges of sparse image deformation clues, low SNR and the low temporal resolution. In the current study we propose a fast algorithm for evaluating the mechanical function of the left ventricle from cardiac CT data. A compact parametric motion model is used to describe the regional 3D contraction and twist. The algorithm is based on regularized multi-homography image registration. The rotational velocities are estimated and compared to their respective values in the literature, with good agreement. Good performance in classifying the segments as normal or abnormal with respect to expert's visual scores is obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于4D心脏CT数据的左心室区域力学功能快速估计算法
心脏病变通常与局部心室功能障碍有关。从心脏CT图像数据估计局部心肌运动的方法通常忽略了旋转速度。其原因包括图像变形线索稀疏、信噪比低、时间分辨率低等。在目前的研究中,我们提出了一种快速算法来评估从心脏CT数据左心室的机械功能。采用紧凑的参数化运动模型来描述区域三维收缩和扭转。该算法基于正则化多单应性图像配准。估计了旋转速度,并将其与文献中各自的值进行了比较,结果很一致。在根据专家的视觉评分对片段进行正常或异常分类方面取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1