{"title":"Determination of physical heat capacity of metallurgical production materials by additivity method","authors":"B. Yur'ev, O. Sheshukov, V. Dudko","doi":"10.32339/0135-5910-2019-7-810-817","DOIUrl":null,"url":null,"abstract":"Heat capacity is one of most important thermal physic characteristics of materials, allowing determining dependence between amount of heat, input to a body or taken away from it, and alteration of its temperature. The labor intensiveness of the test determination of the heat capacity is rather big. Particularly it is difficult to take into account the influence of changes of chemical composition in the process of heating on changes of their heat capacity. A method of calculation of heat capacity of materials proposed using the additivity method. Difficulties of its determination shown, related to insufficient knowledge of additivity method application. The temperature limits determined, until which it is reasonable to make the calculations of materials heat capacity by the proposed method. An example of calculation of siderite ore physical heat capacity considered. Good enough convergence of the results obtained by calculation and heat capacity data, obtained by experiments shown. Divergence between results of heat capacity determination by experiment method and by calculation using additivity method does not exceed 5%. The considered method of physical heat capacity determination can be used also for other materials providing the content of separate components and their changes within the temperature range under the study is known.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2019-7-810-817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heat capacity is one of most important thermal physic characteristics of materials, allowing determining dependence between amount of heat, input to a body or taken away from it, and alteration of its temperature. The labor intensiveness of the test determination of the heat capacity is rather big. Particularly it is difficult to take into account the influence of changes of chemical composition in the process of heating on changes of their heat capacity. A method of calculation of heat capacity of materials proposed using the additivity method. Difficulties of its determination shown, related to insufficient knowledge of additivity method application. The temperature limits determined, until which it is reasonable to make the calculations of materials heat capacity by the proposed method. An example of calculation of siderite ore physical heat capacity considered. Good enough convergence of the results obtained by calculation and heat capacity data, obtained by experiments shown. Divergence between results of heat capacity determination by experiment method and by calculation using additivity method does not exceed 5%. The considered method of physical heat capacity determination can be used also for other materials providing the content of separate components and their changes within the temperature range under the study is known.