Carbon nanotubes based lubricating oils for engines

Nguyen Manh Hong, B. Thang, P. N. Hong, N. T. Hong, P. H. Khoi, P. N. Minh
{"title":"Carbon nanotubes based lubricating oils for engines","authors":"Nguyen Manh Hong, B. Thang, P. N. Hong, N. T. Hong, P. H. Khoi, P. N. Minh","doi":"10.1109/NEMS.2016.7758196","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNTs) are well-known nanomaterials with many excellent properties such as high hardness, high strength, and excellent thermal conductivity. Owing to their very high thermal conductivity (2000 W/m.K compared to thermal conductivity of Ag 419 W/m.K), CNTs become ones of the most suitable nano additives for fabricating the lubricating oils in order to increase the thermal conductivity of lubricating oils, to enhance the efficiency of heat dissipation for the engine, and to improve the performance efficiency of engine. In this work, we present the obtained results on application of the CNTs in lubricating oils for some engines. The results showed that with the addition of CNTs, the thermal conductivity of lubricating oils increase about 15%, this helps improve the efficiency of heat dissipation for the engine. Experimental results show that when using the lubricating oils containing carbon nanotubes, the temperature of engine dropped about 10°C, fuel saving was upto 15% and longevity of lubricating oil increased upto 20,000 km.","PeriodicalId":150449,"journal":{"name":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2016.7758196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotubes (CNTs) are well-known nanomaterials with many excellent properties such as high hardness, high strength, and excellent thermal conductivity. Owing to their very high thermal conductivity (2000 W/m.K compared to thermal conductivity of Ag 419 W/m.K), CNTs become ones of the most suitable nano additives for fabricating the lubricating oils in order to increase the thermal conductivity of lubricating oils, to enhance the efficiency of heat dissipation for the engine, and to improve the performance efficiency of engine. In this work, we present the obtained results on application of the CNTs in lubricating oils for some engines. The results showed that with the addition of CNTs, the thermal conductivity of lubricating oils increase about 15%, this helps improve the efficiency of heat dissipation for the engine. Experimental results show that when using the lubricating oils containing carbon nanotubes, the temperature of engine dropped about 10°C, fuel saving was upto 15% and longevity of lubricating oil increased upto 20,000 km.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发动机用碳纳米管润滑油
碳纳米管(Carbon nanotubes, CNTs)是一种众所周知的纳米材料,具有高硬度、高强度和优异的导热性。由于其非常高的导热系数(2000 W/m)。(与导热系数Ag 419 W/m.K相比),CNTs可以增加润滑油的导热系数,提高发动机的散热效率,提高发动机的性能效率,是最适合用于制造润滑油的纳米添加剂之一。在这项工作中,我们介绍了碳纳米管在某些发动机润滑油中的应用所获得的结果。结果表明,添加CNTs后,润滑油的导热系数提高了约15%,有助于提高发动机的散热效率。实验结果表明,使用含碳纳米管的润滑油时,发动机温度下降约10℃,节油达15%,润滑油寿命提高至2万公里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MEMS artificial neuromast arrays for hydrodynamic control of soft-robots In-situ cellular-scale injection for alive plants by micro-bubble injector High-throughput injection by circulating plasma-bubbles laden flows Development of a simple fabrication process for a printable piezoelectric energy harvest device A three-dimensional microfluidic device for oocyte zona-removal and incubation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1