Developing and Evaluating a Machine Learning Based Diagnosis System for Diabetes Mellitus using Interpretable Techniques

M. Narasimharao, B. Swain, P. Nayak, S. Bhuyan
{"title":"Developing and Evaluating a Machine Learning Based Diagnosis System for Diabetes Mellitus using Interpretable Techniques","authors":"M. Narasimharao, B. Swain, P. Nayak, S. Bhuyan","doi":"10.1109/APSIT58554.2023.10201753","DOIUrl":null,"url":null,"abstract":"Diabetes is a major global health issue that affects multiple bodily components and contributes to millions of deaths each year. Traditional approaches to diabetes diagnosis and treatment are often limited by their lack of accuracy, transparency, and efficiency. This study aims to develop and evaluate a novel machine learning-based diagnosis system for diabetes mellitus using interpretable supervised and neural network techniques. The study used a dataset of 9 features listed in 2000 patient information from The Frankfurt Hospital, Germany, and trained and tested several ML algorithms including logistic regression, gradient boosting, naive Bayes classifier, random forest classifier, and artificial neural network (ANN). The performance of each algorithm was evaluated using precision, recall, and F1-score, and the findings indicate that the ANN model performs best with a larger number of features, achieving 100% accuracy. Interpretable techniques were used to facilitate understanding of the ML model decision-making process. The suggested system offers several implications and potential impacts on healthcare practice, including improved diagnosis accuracy, automation of diabetes testing and referral algorithms, and reduced time, work, and labor in medical services. These findings highlight the potential of machine learning to address the limitations of traditional diabetes diagnosis and treatment, and contribute to better patient outcomes.","PeriodicalId":170044,"journal":{"name":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT58554.2023.10201753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a major global health issue that affects multiple bodily components and contributes to millions of deaths each year. Traditional approaches to diabetes diagnosis and treatment are often limited by their lack of accuracy, transparency, and efficiency. This study aims to develop and evaluate a novel machine learning-based diagnosis system for diabetes mellitus using interpretable supervised and neural network techniques. The study used a dataset of 9 features listed in 2000 patient information from The Frankfurt Hospital, Germany, and trained and tested several ML algorithms including logistic regression, gradient boosting, naive Bayes classifier, random forest classifier, and artificial neural network (ANN). The performance of each algorithm was evaluated using precision, recall, and F1-score, and the findings indicate that the ANN model performs best with a larger number of features, achieving 100% accuracy. Interpretable techniques were used to facilitate understanding of the ML model decision-making process. The suggested system offers several implications and potential impacts on healthcare practice, including improved diagnosis accuracy, automation of diabetes testing and referral algorithms, and reduced time, work, and labor in medical services. These findings highlight the potential of machine learning to address the limitations of traditional diabetes diagnosis and treatment, and contribute to better patient outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释技术开发和评估基于机器学习的糖尿病诊断系统
糖尿病是一个主要的全球健康问题,影响到身体的多个部分,每年导致数百万人死亡。传统的糖尿病诊断和治疗方法往往由于缺乏准确性、透明度和效率而受到限制。本研究旨在利用可解释监督和神经网络技术开发和评估一种新的基于机器学习的糖尿病诊断系统。该研究使用了德国法兰克福医院2000例患者信息中列出的9个特征数据集,并训练和测试了几种ML算法,包括逻辑回归、梯度增强、朴素贝叶斯分类器、随机森林分类器和人工神经网络(ANN)。使用精度、召回率和f1分数对每种算法的性能进行了评估,结果表明,ANN模型在特征数量较多时表现最佳,达到100%的准确率。可解释技术用于促进对ML模型决策过程的理解。建议的系统为医疗保健实践提供了几个含义和潜在影响,包括提高诊断准确性,糖尿病测试和转诊算法的自动化,以及减少医疗服务中的时间、工作和劳动力。这些发现突出了机器学习解决传统糖尿病诊断和治疗局限性的潜力,并有助于改善患者的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DGA Based Ensemble Learning Approach for Power Transformer Fault Diagnosis Review of Routing Protocols for Sink with mobility nature in Wireless Sensor Networks Comparative Analysis of Dual-edge Triggered and Sense Amplifier Based Flip-flops in 32 nm CMOS Regime Text Classification of Climate Change Tweets using Artificial Neural Networks, FastText Word Embeddings, and Latent Dirichlet Allocation An Integration of Elephant Herding Optimization and Fruit Fly Optimized Algorithm for Energy Conserving in MANET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1