Deep Learning Based Algae Detection Method

Ziye Fang, Shu Jiang, Xiaoyu Du, Zechao Li
{"title":"Deep Learning Based Algae Detection Method","authors":"Ziye Fang, Shu Jiang, Xiaoyu Du, Zechao Li","doi":"10.1109/UV56588.2022.10185530","DOIUrl":null,"url":null,"abstract":"The ocean is an important part of the ecosystem and is closely related to our lives. Detecting the status of algae in the ocean contributes to the protection of the marine environment. With the continuous development of target detection technology, small target detection tasks are gradually applied to the task of monitoring marine organisms. We use two-stage cascade RCNN with Res2Net, ResNeSt, CBNet, ConvNeXt and DetectoRS backbone. Secondly, data pre-processing was used with blur, motion blur, MixUp, random rotation and other data enhancements. Then the pseudo label training model is used as a pre-training model. And model ensemble is used to improve the inference results. Finally Post-processing is performed using reduced bbox. We conduct extensive experiments on the dataset and achieve the performance of 0.562.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ocean is an important part of the ecosystem and is closely related to our lives. Detecting the status of algae in the ocean contributes to the protection of the marine environment. With the continuous development of target detection technology, small target detection tasks are gradually applied to the task of monitoring marine organisms. We use two-stage cascade RCNN with Res2Net, ResNeSt, CBNet, ConvNeXt and DetectoRS backbone. Secondly, data pre-processing was used with blur, motion blur, MixUp, random rotation and other data enhancements. Then the pseudo label training model is used as a pre-training model. And model ensemble is used to improve the inference results. Finally Post-processing is performed using reduced bbox. We conduct extensive experiments on the dataset and achieve the performance of 0.562.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的藻类检测方法
海洋是生态系统的重要组成部分,与我们的生活息息相关。监测海洋中藻类的状况有助于保护海洋环境。随着目标检测技术的不断发展,小目标检测任务逐渐应用到海洋生物监测任务中。我们使用两级联RCNN与Res2Net, ResNeSt, CBNet, ConvNeXt和DetectoRS主干。其次,对数据进行预处理,对数据进行模糊、运动模糊、MixUp、随机旋转等增强。然后使用伪标签训练模型作为预训练模型。采用模型集成的方法改进推理结果。最后使用简化后的bbox进行后处理。我们在数据集上进行了大量的实验,达到了0.562的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1