{"title":"DESIGN OF A ROBOTIC TAPING MECHANISM FOR UAV-BASED WIND TURBINE BLADE MAINTENANCE","authors":"Joshua Genova, Lakshay Gupta, V. Hoskere","doi":"10.12783/shm2021/36337","DOIUrl":null,"url":null,"abstract":"Wind energy generated through wind turbines is a critical contributor towards realizing a renewable energy economy. Maximizing the efficiency of power generation from wind turbines is required to meet target generation capacities. The leading edge of wind turbine’s blade is designed such that its smooth, aerodynamic surface will produce maximum power given the size specification of the turbine. As these blades age, they typically suffer from leading edge erosion, or LEE, which is the gradual erosion of the blade’s leading edge. Not only does LEE shorten a blade’s lifespan, but it also negatively affects performance, reducing annual energy production. Application of wind blade protection tape is a frequently used solution for LEE on the damaged area. Tape application requires a crew of technicians with a lift and is considered high-risk where one mistake can lead to fatal injury. The focus of this paper is to present a method of automating the wind blade protection tape application by using a UAV with an endeffector. Specifically, the end-effector is an automatic taping mechanism that will apply wind blade protection tape to the damaged area. The paper discusses the overall robotic arm design, topology optimization, and hardware components used to create the operation for the automatic taping mechanism. The end-effector is designed to dispense tape, extend to create contact to the surface, and cut to finish the application. The rest of the arm is used for the motion of tape application vertically starting from the bottom of the damaged region. The process is completed once the damaged area has been covered with protection tape and tape has been cut. The developed end-effector demonstrates the effectiveness of the taping operation, ultimately conserving the wind blade’s lifespan and decreasing the risk of human injury.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wind energy generated through wind turbines is a critical contributor towards realizing a renewable energy economy. Maximizing the efficiency of power generation from wind turbines is required to meet target generation capacities. The leading edge of wind turbine’s blade is designed such that its smooth, aerodynamic surface will produce maximum power given the size specification of the turbine. As these blades age, they typically suffer from leading edge erosion, or LEE, which is the gradual erosion of the blade’s leading edge. Not only does LEE shorten a blade’s lifespan, but it also negatively affects performance, reducing annual energy production. Application of wind blade protection tape is a frequently used solution for LEE on the damaged area. Tape application requires a crew of technicians with a lift and is considered high-risk where one mistake can lead to fatal injury. The focus of this paper is to present a method of automating the wind blade protection tape application by using a UAV with an endeffector. Specifically, the end-effector is an automatic taping mechanism that will apply wind blade protection tape to the damaged area. The paper discusses the overall robotic arm design, topology optimization, and hardware components used to create the operation for the automatic taping mechanism. The end-effector is designed to dispense tape, extend to create contact to the surface, and cut to finish the application. The rest of the arm is used for the motion of tape application vertically starting from the bottom of the damaged region. The process is completed once the damaged area has been covered with protection tape and tape has been cut. The developed end-effector demonstrates the effectiveness of the taping operation, ultimately conserving the wind blade’s lifespan and decreasing the risk of human injury.