Deep Learning for Anomaly Detection

Ruoying Wang, Kexin Nie, Tie Wang, Yang Yang, Bo Long
{"title":"Deep Learning for Anomaly Detection","authors":"Ruoying Wang, Kexin Nie, Tie Wang, Yang Yang, Bo Long","doi":"10.1145/3336191.3371876","DOIUrl":null,"url":null,"abstract":"Anomaly detection has been widely studied and used in diverse applications. Building an effective anomaly detection system requires the researchers/developers to learn the complex structure from noisy data, identify the dynamic anomaly patterns and detect anomalies while lacking sufficient labels. Recent advancement in deep learning techniques has made it possible to largely improve anomaly detection performance compared to the classical approaches. This tutorial will help the audience gain a comprehensive understanding of deep learning-based anomaly detection techniques in various application domains. First, it introduces what is the anomaly detection problem, the approaches taken before the deep model era and the challenges it faced. Then it surveys the state-of-the-art deep learning models extensively and discusses the techniques used to overcome the limitations from traditional algorithms. Second to last, it studies deep model anomaly detection techniques in real world examples from LinkedIn production systems. The tutorial concludes with a discussion of future trends.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Anomaly detection has been widely studied and used in diverse applications. Building an effective anomaly detection system requires the researchers/developers to learn the complex structure from noisy data, identify the dynamic anomaly patterns and detect anomalies while lacking sufficient labels. Recent advancement in deep learning techniques has made it possible to largely improve anomaly detection performance compared to the classical approaches. This tutorial will help the audience gain a comprehensive understanding of deep learning-based anomaly detection techniques in various application domains. First, it introduces what is the anomaly detection problem, the approaches taken before the deep model era and the challenges it faced. Then it surveys the state-of-the-art deep learning models extensively and discusses the techniques used to overcome the limitations from traditional algorithms. Second to last, it studies deep model anomaly detection techniques in real world examples from LinkedIn production systems. The tutorial concludes with a discussion of future trends.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习异常检测
异常检测已经得到了广泛的研究和应用。建立一个有效的异常检测系统需要研究/开发人员从噪声数据中学习复杂结构,识别动态异常模式,在缺乏足够标签的情况下检测异常。与经典方法相比,深度学习技术的最新进展使得异常检测性能有了很大的提高。本教程将帮助读者全面了解各种应用领域中基于深度学习的异常检测技术。首先,介绍了什么是异常检测问题,深度模型时代之前采用的方法以及面临的挑战。然后,它广泛地调查了最先进的深度学习模型,并讨论了用于克服传统算法局限性的技术。其次,在LinkedIn生产系统的实际示例中研究深度模型异常检测技术。本教程最后讨论了未来的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1