Automatic characterization of leukemic cells with 2D light scattering static cytometry

Lan Wang, Qiao Liu, Linyan Xie, C. Shao, Xuantao Su
{"title":"Automatic characterization of leukemic cells with 2D light scattering static cytometry","authors":"Lan Wang, Qiao Liu, Linyan Xie, C. Shao, Xuantao Su","doi":"10.1109/CAC.2017.8243843","DOIUrl":null,"url":null,"abstract":"Two-dimensional light scattering patterns of single normal granulocytes and acute leukemia cells (HL-60 cells) are obtained by using our label-free static cytometric technology. Conventional flow cytometry for the differentiation of these two types of cells is performed by measuring both the forward scattering (FSC) and side scattering (SSC). Our label-free static cytometer obtains the SSC patterns of single cells. By applying machine learning algorithm to the SSC patterns, a high accuracy rate for the classification of normal granulocytes and HL-60 cells is obtained. This may provide an automatic, label-free technique for leukemia analysis.","PeriodicalId":116872,"journal":{"name":"2017 Chinese Automation Congress (CAC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Chinese Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC.2017.8243843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional light scattering patterns of single normal granulocytes and acute leukemia cells (HL-60 cells) are obtained by using our label-free static cytometric technology. Conventional flow cytometry for the differentiation of these two types of cells is performed by measuring both the forward scattering (FSC) and side scattering (SSC). Our label-free static cytometer obtains the SSC patterns of single cells. By applying machine learning algorithm to the SSC patterns, a high accuracy rate for the classification of normal granulocytes and HL-60 cells is obtained. This may provide an automatic, label-free technique for leukemia analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用二维光散射静态细胞仪自动表征白血病细胞
我们的无标记静态细胞技术获得了单个正常粒细胞和急性白血病细胞(HL-60细胞)的二维光散射图。传统的流式细胞术是通过测量这两种类型细胞的前向散射(FSC)和侧向散射(SSC)来进行分化的。我们的无标记静态细胞仪获得单个细胞的SSC模式。通过将机器学习算法应用于SSC模式,获得了正常粒细胞和HL-60细胞分类的较高准确率。这可能为白血病分析提供一种自动、无标记的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral profiling for employees using social media: A case study based on wechat Exploring new mechanisms for demand-side platforms in real time bidding markets Phase retrieval technology based on multi-angle tilt light modulation Multi-block kernel probabilistic principal component analysis approach and its application for fault detection Fault detection method based on margin statistics of generalized non-negative matrix factorization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1