Towards Discriminative Visual Search via Semantically Cycle-consistent Hashing Networks

Zheng Zhang, Jianning Wang, Guangming Lu
{"title":"Towards Discriminative Visual Search via Semantically Cycle-consistent Hashing Networks","authors":"Zheng Zhang, Jianning Wang, Guangming Lu","doi":"10.1145/3469877.3490583","DOIUrl":null,"url":null,"abstract":"Deep hashing has shown great potentials in large-scale visual similarity search due to preferable storage and computation efficiency. Typically, deep hashing encodes visual features into compact binary codes by preserving representative semantic visual features. Works in this area mainly focus on building the relationship between the visual and objective hash space, while they seldom study the triadic cross-domain semantic knowledge transfer among visual, semantic and hashing spaces, leading to serious semantic ignorance problem during space transformation. In this paper, we propose a novel deep tripartite semantically interactive hashing framework, dubbed Semantically Cycle-consistent Hashing Networks (SCHN), for discriminative hash code learning. Particularly, we construct a flexible semantic space and a transitive latent space, in conjunction with the visual space, to jointly deduce the privileged discriminative hash space. Specifically, a semantic space is conceived to strengthen the flexibility and completeness of categories in feature inference. Moreover, a transitive latent space is formulated to explore the shared semantic interactivity embedded in visual and semantic features. Our SCHN, for the first time, establishes the cyclic principle of deep semantic-preserving hashing by adaptive semantic parsing across different spaces in visual similarity search. In addition, the entire learning framework is jointly optimized in an end-to-end manner. Extensive experiments performed on diverse large-scale datasets evidence the superiority of our method against other state-of-the-art deep hashing algorithms.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3490583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Deep hashing has shown great potentials in large-scale visual similarity search due to preferable storage and computation efficiency. Typically, deep hashing encodes visual features into compact binary codes by preserving representative semantic visual features. Works in this area mainly focus on building the relationship between the visual and objective hash space, while they seldom study the triadic cross-domain semantic knowledge transfer among visual, semantic and hashing spaces, leading to serious semantic ignorance problem during space transformation. In this paper, we propose a novel deep tripartite semantically interactive hashing framework, dubbed Semantically Cycle-consistent Hashing Networks (SCHN), for discriminative hash code learning. Particularly, we construct a flexible semantic space and a transitive latent space, in conjunction with the visual space, to jointly deduce the privileged discriminative hash space. Specifically, a semantic space is conceived to strengthen the flexibility and completeness of categories in feature inference. Moreover, a transitive latent space is formulated to explore the shared semantic interactivity embedded in visual and semantic features. Our SCHN, for the first time, establishes the cyclic principle of deep semantic-preserving hashing by adaptive semantic parsing across different spaces in visual similarity search. In addition, the entire learning framework is jointly optimized in an end-to-end manner. Extensive experiments performed on diverse large-scale datasets evidence the superiority of our method against other state-of-the-art deep hashing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义循环一致哈希网络的判别视觉搜索
由于较好的存储效率和计算效率,深度哈希在大规模视觉相似搜索中显示出巨大的潜力。通常,深度哈希通过保留具有代表性的语义视觉特征,将视觉特征编码为紧凑的二进制代码。该领域的工作主要集中在建立视觉哈希空间与客观哈希空间之间的关系,而很少研究视觉、语义和哈希空间之间的三元跨域语义知识转移,导致空间转换过程中存在严重的语义忽略问题。在本文中,我们提出了一种新的深度三方语义交互哈希框架,称为语义循环一致哈希网络(SCHN),用于判别哈希码学习。特别地,我们构建了一个灵活的语义空间和一个传递潜空间,结合视觉空间,共同推导出特权判别哈希空间。具体来说,语义空间是用来增强特征推理中类别的灵活性和完整性的。此外,我们还建立了一个传递潜空间来探索嵌入在视觉和语义特征中的共享语义交互性。我们的SCHN首次在视觉相似性搜索中通过跨不同空间的自适应语义解析建立了深度语义保持哈希的循环原理。此外,整个学习框架以端到端方式共同优化。在不同的大规模数据集上进行的大量实验证明了我们的方法相对于其他最先进的深度哈希算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1