M. Muehlberghuber, Frank K. Gürkaynak, Thomas Korak, Philipp Dunst, M. Hutter
{"title":"Red team vs. blue team hardware trojan analysis: detection of a hardware trojan on an actual ASIC","authors":"M. Muehlberghuber, Frank K. Gürkaynak, Thomas Korak, Philipp Dunst, M. Hutter","doi":"10.1145/2487726.2487727","DOIUrl":null,"url":null,"abstract":"We infiltrate the ASIC development chain by inserting a small denial-of-service (DoS) hardware Trojan at the fabrication design phase into an existing VLSI circuit, thereby simulating an adversary at a semiconductor foundry. Both the genuine and the altered ASICs have been fabricated using a 180 nm CMOS process. The Trojan circuit adds an overhead of only 0.5% to the original design. In order to detect the hardware Trojan, we perform side-channel analyses and apply IC-fingerprinting techniques using templates, principal component analysis (PCA), and support vector machines (SVMs). As a result, we were able to successfully identify and classify all infected ASICs from non-infected ones. To the best of our knowledge, this is the first hardware Trojan manufactured as an ASIC and has successfully been analyzed using side channels.","PeriodicalId":141766,"journal":{"name":"Hardware and Architectural Support for Security and Privacy","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hardware and Architectural Support for Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487726.2487727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
We infiltrate the ASIC development chain by inserting a small denial-of-service (DoS) hardware Trojan at the fabrication design phase into an existing VLSI circuit, thereby simulating an adversary at a semiconductor foundry. Both the genuine and the altered ASICs have been fabricated using a 180 nm CMOS process. The Trojan circuit adds an overhead of only 0.5% to the original design. In order to detect the hardware Trojan, we perform side-channel analyses and apply IC-fingerprinting techniques using templates, principal component analysis (PCA), and support vector machines (SVMs). As a result, we were able to successfully identify and classify all infected ASICs from non-infected ones. To the best of our knowledge, this is the first hardware Trojan manufactured as an ASIC and has successfully been analyzed using side channels.