SOLI: A Tiny Device for a New Human Machine Interface

S. Trotta, D. Weber, Reinhard Jungmaier, Ashutosh Baheti, J. Lien, Dennis Noppeney, M. Tabesh, Christoph Rumpler, Michael Aichner, Siegfried Albel, Jagjit S. Bal, I. Poupyrev
{"title":"SOLI: A Tiny Device for a New Human Machine Interface","authors":"S. Trotta, D. Weber, Reinhard Jungmaier, Ashutosh Baheti, J. Lien, Dennis Noppeney, M. Tabesh, Christoph Rumpler, Michael Aichner, Siegfried Albel, Jagjit S. Bal, I. Poupyrev","doi":"10.1109/ISSCC42613.2021.9365835","DOIUrl":null,"url":null,"abstract":"With the introduction of the Internet of Things (IoT), there is an increasing focus on human-to-machine interaction. Nowadays, sensors make system and robots to see, hear, feel, and intuitively “understand” their surroundings. 60GHz radar [1] provides a very attractive solution for the sensing of human motion, enabling specific use cases such as: smart presence, hand gesture, and vital signs monitoring. Those can enhance the user experience in wearables, mobile devices, TVs, smart homes, automotive infotainment systems and AR-VR applications. The high bandwidth allocated in the 60GHz band (from 57 to 64GHz) enables very high range resolution sensing ($\\approx$ 2cm), which, when complemented with micro-Doppler and time domain analysis [2], offers a powerful tool for discriminating complex hand movements with millimeter accuracy. The solution presented in this paper represents the a tiny radar system integrated into a smartphone, the Google Pixel 4. The simplified signal flow pipeline, from the radar sensor up to the signal transformation and classification, is presented in Fig. 2.3.1 [3]. The radar sensor is designed primarily taking into account all the integration boundaries, which includes in primis power consumption and package size (including antenna). Specifically, the power consumption requirement translates to a very stringent requirement for the maximum number of chirps the sensor could run per frame, impacting the process gain, and so the maximum detection range.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With the introduction of the Internet of Things (IoT), there is an increasing focus on human-to-machine interaction. Nowadays, sensors make system and robots to see, hear, feel, and intuitively “understand” their surroundings. 60GHz radar [1] provides a very attractive solution for the sensing of human motion, enabling specific use cases such as: smart presence, hand gesture, and vital signs monitoring. Those can enhance the user experience in wearables, mobile devices, TVs, smart homes, automotive infotainment systems and AR-VR applications. The high bandwidth allocated in the 60GHz band (from 57 to 64GHz) enables very high range resolution sensing ($\approx$ 2cm), which, when complemented with micro-Doppler and time domain analysis [2], offers a powerful tool for discriminating complex hand movements with millimeter accuracy. The solution presented in this paper represents the a tiny radar system integrated into a smartphone, the Google Pixel 4. The simplified signal flow pipeline, from the radar sensor up to the signal transformation and classification, is presented in Fig. 2.3.1 [3]. The radar sensor is designed primarily taking into account all the integration boundaries, which includes in primis power consumption and package size (including antenna). Specifically, the power consumption requirement translates to a very stringent requirement for the maximum number of chirps the sensor could run per frame, impacting the process gain, and so the maximum detection range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SOLI:一种新型人机界面的微型设备
随着物联网(IoT)的引入,人们越来越关注人机交互。如今,传感器使系统和机器人能够看到、听到、感觉到并直观地“理解”周围的环境。60GHz雷达[1]为人体运动传感提供了一个非常有吸引力的解决方案,支持特定用例,如:智能存在、手势和生命体征监测。这些可以增强可穿戴设备、移动设备、电视、智能家居、汽车信息娱乐系统和AR-VR应用的用户体验。60GHz频段(从57 ghz到64GHz)分配的高带宽可实现非常高的距离分辨率传感(约2cm),当与微多普勒和时域分析[2]相补充时,它为识别毫米精度的复杂手部运动提供了强大的工具。本文提出的解决方案是将一个微型雷达系统集成到智能手机Google Pixel 4中。从雷达传感器到信号变换和分类的简化信号流流程如图2.3.1所示[3]。雷达传感器的设计主要考虑了所有集成边界,包括基本功耗和封装尺寸(包括天线)。具体来说,功耗要求转化为对传感器每帧可以运行的最大啁啾数的非常严格的要求,这会影响过程增益,从而影响最大检测范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10.6 A 12b 16GS/s RF-Sampling Capacitive DAC for Multi-Band Soft-Radio Base-Station Applications with On-Chip Transmission-Line Matching Network in 16nm FinFET A 0.021mm2 PVT-Aware Digital-Flow-Compatible Adaptive Back-Biasing Regulator with Scalable Drivers Achieving 450% Frequency Boosting and 30% Power Reduction in 22nm FDSOI Technology 8.1 A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS 14.7 An Adaptive Analog Temperature-Healing Low-Power 17.7-to-19.2GHz RX Front-End with ±0.005dB/°C Gain Variation, <1.6dB NF Variation, and <2.2dB IP1dB Variation across -15 to 85°C for Phased-Array Receiver ISSCC 2021 Index to Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1