An improved measure for data clustering in high dimensional space

Snehalika Lall, Rimita Lahiri, A. Konar, Sanchita Ghosh
{"title":"An improved measure for data clustering in high dimensional space","authors":"Snehalika Lall, Rimita Lahiri, A. Konar, Sanchita Ghosh","doi":"10.1109/MICROCOM.2016.7522565","DOIUrl":null,"url":null,"abstract":"The k-means clustering fails to correctly cluster the data points in high dimensional space, primarily for employing Euclidean norm as the distance metric. The Euclidean metric increases with the increase in data dimension, thus posing difficulty to segregate intra-cluster and inter-cluster data points. Adoption of k-means clustering, realized with Euclidean distance norm, often misguides the selection of cluster centres in a given iteration. This paper proposes a novel approach to k-means clustering algorithm by replacing the Euclidean distance metric by a new one. The merit of the proposed metric lies in keeping the distance low, even for large dimensional data points. The new metric enables the algorithm to correctly select the cluster centres over the iterations. Experiments undertaken revealed that the said distance metric based k-means clustering outperforms the traditional one by a large margin.","PeriodicalId":118902,"journal":{"name":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Microelectronics, Computing and Communications (MicroCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICROCOM.2016.7522565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The k-means clustering fails to correctly cluster the data points in high dimensional space, primarily for employing Euclidean norm as the distance metric. The Euclidean metric increases with the increase in data dimension, thus posing difficulty to segregate intra-cluster and inter-cluster data points. Adoption of k-means clustering, realized with Euclidean distance norm, often misguides the selection of cluster centres in a given iteration. This paper proposes a novel approach to k-means clustering algorithm by replacing the Euclidean distance metric by a new one. The merit of the proposed metric lies in keeping the distance low, even for large dimensional data points. The new metric enables the algorithm to correctly select the cluster centres over the iterations. Experiments undertaken revealed that the said distance metric based k-means clustering outperforms the traditional one by a large margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的高维空间数据聚类方法
k-means聚类不能正确聚类高维空间中的数据点,主要原因是采用欧几里德范数作为距离度量。欧几里得度量随着数据维数的增加而增加,使得簇内和簇间数据点的分离变得困难。采用欧氏距离范数实现的k-means聚类,在给定迭代中往往会误导聚类中心的选择。本文提出了一种新的k-means聚类算法,即用新的欧氏距离度量代替欧氏距离度量。该度量的优点在于即使对于大维度的数据点,也能保持较低的距离。新的度量使算法能够在迭代中正确选择聚类中心。实验表明,基于距离度量的k-means聚类在很大程度上优于传统聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peak-to-average power ratio analysis for NC-OQAM/OFDM transmissions Improved speculative Apriori with percentiles algorithm for website restructuring based on usage patterns Achievement of various bands at the UltraWideband range: Design of an UltraWideband antenna using the concept of band-notching Improved performance of cascaded multilevel inverter Gesture based improved human-computer interaction using Microsoft's Kinect sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1