Lei Zhang, A. Ijaz, P. Xiao, A. Quddus, R. Tafazolli
{"title":"Single-rate and multi-rate multi-service systems for next generation and beyond communications","authors":"Lei Zhang, A. Ijaz, P. Xiao, A. Quddus, R. Tafazolli","doi":"10.1109/PIMRC.2016.7794635","DOIUrl":null,"url":null,"abstract":"To flexibly support diverse communication requirements (e.g., throughput, latency, massive connection, etc.) for the next generation wireless communications, one viable solution is to divide the system bandwidth into several service subbands, each for a different type of service. In such a multi-service (MS) system, each service has its optimal frame structure while the services are isolated by subband filtering. In this paper, a framework for multi-service (MS) system is established based on subband filtered multi-carrier (SFMC) modulation. We consider both single-rate (SR) and multi-rate (MR) signal processing as two different MS-SFMC implementations, each having different performance and computational complexity. By comparison, the SR system outperforms the MR system in terms of performance while the MR system has a significantly reduced computational complexity than the SR system. Numerical results show the effectiveness of our analysis and the proposed systems. These proposed SR and MR MS-SFMC systems provide guidelines for next generation wireless system frame structure optimization and algorithm design.","PeriodicalId":137845,"journal":{"name":"2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2016.7794635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
To flexibly support diverse communication requirements (e.g., throughput, latency, massive connection, etc.) for the next generation wireless communications, one viable solution is to divide the system bandwidth into several service subbands, each for a different type of service. In such a multi-service (MS) system, each service has its optimal frame structure while the services are isolated by subband filtering. In this paper, a framework for multi-service (MS) system is established based on subband filtered multi-carrier (SFMC) modulation. We consider both single-rate (SR) and multi-rate (MR) signal processing as two different MS-SFMC implementations, each having different performance and computational complexity. By comparison, the SR system outperforms the MR system in terms of performance while the MR system has a significantly reduced computational complexity than the SR system. Numerical results show the effectiveness of our analysis and the proposed systems. These proposed SR and MR MS-SFMC systems provide guidelines for next generation wireless system frame structure optimization and algorithm design.