Effect of fiber orientation and loading direction on the compressive response of E-glass/Epoxy laminated composites used in modern helicopter blades submitted to high strain rate

A. Çelik, Y. Arman
{"title":"Effect of fiber orientation and loading direction on the compressive response of E-glass/Epoxy laminated composites used in modern helicopter blades submitted to high strain rate","authors":"A. Çelik, Y. Arman","doi":"10.24012/dumf.1140112","DOIUrl":null,"url":null,"abstract":"In this investigation, the dynamic behaviour of glass fibre reinforced poly- mer under in-plane and out-of-plane dynamic compression tests was studied experimentally and numerically under varying the fibres orientation and the loading conditions. The composites consist of unidirectional E-glass fibers reinforced epoxy polymer composites used in modern helicopter blade application as inner surface. Specimens, with a cylindrical shape, are impacted at a constant strain rate subjected to SHPB and Ls Dyna program. The numerical results are in good agreement with experimental results. The results show that the out-of-plane stress values for different fiber orientation are close to each other, but the in-plane stress value is far lower for the fibers direction of ±45◦. This study will facilitate fiber orientation selection for dynamic effects during the helicopter blade production phase. Not only simple tests but also practical ideas make this study stand out. Considering results, the use of ±90◦ fiber direction in helicopter blades seems to be more advantageous against dynamic effects.","PeriodicalId":158576,"journal":{"name":"DÜMF Mühendislik Dergisi","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DÜMF Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24012/dumf.1140112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, the dynamic behaviour of glass fibre reinforced poly- mer under in-plane and out-of-plane dynamic compression tests was studied experimentally and numerically under varying the fibres orientation and the loading conditions. The composites consist of unidirectional E-glass fibers reinforced epoxy polymer composites used in modern helicopter blade application as inner surface. Specimens, with a cylindrical shape, are impacted at a constant strain rate subjected to SHPB and Ls Dyna program. The numerical results are in good agreement with experimental results. The results show that the out-of-plane stress values for different fiber orientation are close to each other, but the in-plane stress value is far lower for the fibers direction of ±45◦. This study will facilitate fiber orientation selection for dynamic effects during the helicopter blade production phase. Not only simple tests but also practical ideas make this study stand out. Considering results, the use of ±90◦ fiber direction in helicopter blades seems to be more advantageous against dynamic effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高应变速率下,纤维取向和加载方向对e -玻璃/环氧复合材料叶片压缩响应的影响
在不同的纤维取向和加载条件下,对玻璃纤维增强聚合物在面内和面外动态压缩试验中的动态行为进行了实验和数值研究。该复合材料由单向e -玻璃纤维增强环氧聚合物复合材料组成,用于现代直升机叶片的内表面。对圆柱形试样进行SHPB和Ls Dyna程序的恒应变率冲击。数值计算结果与实验结果吻合较好。结果表明:不同纤维方向的面外应力值接近,而±45◦方向的面内应力值要小得多;该研究将有助于在直升机叶片生产阶段进行动态影响的纤维方向选择。不仅是简单的测试,而且是实用的想法使这项研究脱颖而出。考虑到结果,在直升机叶片中使用±90◦纤维方向似乎更有利于对抗动态影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Boosted Global Awared Low-light Image Enhancement Network The Effect of Latent Space Vector on Generating Animal Faces in Deep Convolutional GAN: An Analysis Çift tabakalı çelik uzay kafes kubbe sistemlerinin yapısal performansının incelenmesi Boriding Effect on the Hardness of AISI 1020, AISI 1060, AISI 4140 Steels and Application of Artificial Neural Network for Prediction of Borided Layer Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the Reference Path Sent from the Android Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1